
A Domain Specific Language to Define Gestures for  
Multi-Touch Applications  
Shahedul Huq Khandkar, Frank Maurer 

Department of Computer Science 
University of Calgary, Canada 

{s.h.khandkar, frank.maurer}@ucalgary.ca

ABSTRACT 
It is increasingly common for software and hardware systems to 
support touch-based interaction. While the technology to support 
this interaction is still evolving, common protocols for providing 
consistent communication between hardware and software are 
available.  However, this is not true for gesture recognition – the 
act of translating a series of strokes or touches into a system-
recognizable event. Developers often end up writing code for this 
process from scratch due to the lack of higher-level frameworks 
for defining new gestures.  Gesture recognition can contain a 
significant amount of work since it often involves complex, 
platform-specific algorithms.  We present a domain-specific 
language that significantly simplifies the process of defining new 
gestures and allows them to be used across multiple hardware 
platforms. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – abstract data types, polymorphism, control structures. 

General Terms 
Domain Specific Language, Human Factors, Standardization, 
Languages. 

Keywords 
Gesture, Multi-Touch, Multi-User, Touch Interaction, Gesture 
Definition Language (GDL), TouchToolkit, Domain-Specific 
Language. 

1. INTRODUCTION 
Within the domain of human computer interaction, touch has been 
considered an interaction medium for an extensive period of time. 
Until recently however, it was limited to recognizing single touch 
interactions such as selecting options or entering numbers in kiosk 
systems in banks, stores, etc.: Touch was basically treated as a 
mouse replacement. Recent innovations in multi-touch devices, 
have initiated new opportunities for computer interaction that are 
fundamentally intuitive and natural. As these devices become 
increasingly affordable, it is essential to create new applications 
and extend existing ones to support touch-based interaction. 

Comparatively, multi-touch is a newer interaction technique, 
where different types of touches including multiple fingers, hands 
or arbitrary tangible objects, can be used to interact with a system. 
While research to find the most suitable multi-touch hardware 
technology is ongoing, a number of devices are available that use 
different approaches to support this form of interaction. 

To utilize this newer medium of input in applications, developers 
will require support from proper frameworks and tools. Currently, 
application developers predominantly use software development 
kits (SDK) provided by hardware vendors that are hardware 
specific. These SDKs provide the necessary infrastructure to 
communicate between hardware and software as well as to some 
extent touch enabled user interface widgets. However, they 
provide limited high level frameworks for programming against 
the touch interactions. As a result, developers often end up 
building touch interaction related modules and gestures from 
scratch.  

Depending on the features of a multi-touch device, a command 
may be triggered by strokes, touches, whole hand interactions, 
tangible object interactions or even multiple concurrent touches 
from different people. In this paper, we primarily focus on simple 
as well as complex touch interactions. Processing the raw touch 
interaction data provided by the hardware into meaningful 
application-recognizable events sometimes involves complex 
algorithms that become cumbersome when fine tuning is required. 
Subsequently, developers typically select gestures based on 
implementation complexity instead of usability. 

 

Figure 1: The Gesture Recognition Process 

Figure 1 shows the processing pipeline of a gesture recognition 
system. The messages generated from hardware are translated into 
low-level data by the device drivers. A gesture recognizer then 
receives these data and evaluates them to detect gestures that are 
requested by the application. When a gesture is detected, the 
gesture recognizer notifies the application through an 
asynchronous callback.  

Application developers sometimes need to develop gesture 
recognition modules to support a new gesture that is natural and 



meaningful for the application. The process can contain a 
significant amount of work since it often involves complex, 
platform-specific algorithms that require special background 
knowledge to develop and fine tune. 

To simplify using gestures in applications, we present the gesture 
definition language (GDL) that hides low level implementation 
complexities from application developers without compromising 
the flexibility of gesture definitions. GDL is a domain-specific 
language designed to streamline the process of defining gestures. 
It enables application programmers to integrate application 
specific gestures into their software systems. GDL is part of 
TouchToolkit1 - a software development kit we developed to 
simplify multi-touch application development and testing. 
Currently, our tool integrates with Windows Presentation 
Foundation and Silverlight.  

The requirements of GDL were collected in two steps. First, we 
studied existing research [10] [16] on gestures for multi-touch 
surfaces to gather a list of useful gestures and compared them 
with existing frameworks and SDKs [3] [5] [6]. We then studied 
requirements coming from several multi-touch applications [1] [2] 
[14] and interviewed three developers. Upon comparing the 
requirements and other available frameworks, we realized that it 
is not practical for a framework to provide every single gesture 
predefined out of the box. Instead, a domain-specific language to 
define custom gestures was seen as a more appropriate solution. 
Following are the four key areas we address in GDL: 

 Separation of concerns, 

 Flexibility, 

 Extensibility, and 

 Independence from hardware 

We discuss these in detail in section 3.  

The remainder of this paper is organized as follows. We start by 
comparing our work to earlier work. Next, we explain the 
requirements that we considered during the language 
development. A discussion follows on how GDL helps solve these 
practical problems. Next we describe the internal architecture for 
the language, the compiler, the hardware abstraction layer and the 
integration of GDL with developer tools. Finally, we discuss the 
limitations of our work before summarizing this paper in the 
conclusion. 

2. RELATED WORK 
Wobbrock [12] proposed a gesture recognition system that 
recognizes gestures by comparing them with base templates. An 
advantage of this approach is that it allows the definition of new 
gestures by adding additional templates. However, this approach 
does have a number of limitations.  For example, it cannot detect 
gestures in a continuous motion stream and only gestures with 
explicit start and end points can be processed. Gestures like a 
lasso (Figure 1) which can be of an arbitrary shape, cannot be 
detected using this approach. GDL provides the flexibility to use 
combinations of primitive conditions to define such gestures. It is 

                                                                 
1 http://touchtoolkit.codeplex.com 

also possible in GDL to generate gesture definitions from raw 
touch data. 

Kartz [8] proposed another approach that relies solely on simple 
trigonometric and geometric calculations. His approach requires 
considerably less training data than some other recognizers. 
However, it too suffers from limitations such as a smaller gesture 
vocabulary size and it cannot process gestures with continuous 
motion. The primitive conditions of GDL include trigonometric 
and geometric calculations that can be used with other conditions. 

Furthermore, both approaches were proposed for single touch 
systems and are often not suitable for multi-touch scenarios that 
involve sequences of multiple concurrent touches. In GDL, 
developers define gestures at a level where they don’t need to 
deal with complexities of multiple touch and users. The gesture 
validator encapsulates these complexities. 

GestureWorks [9] is an application framework for Adobe Flash 
and Flex. It provides a set of predefined gestures to simplify the 
development of multi-touch interactions. While it helps save 
development effort to some extent, it currently works only on 
Windows 7 supported multi-touch devices. Among many other 
multi-touch devices, the Microsoft Surface does not have 
Windows 7 support at the moment. In addition to that, developers 
are limited to choose from the list of predefined gestures, as it 
doesn’t provide options to define new gestures. 

SparshUI [11] is an API for multi-touch applications that provides 
the extensibility to define new gestures. To create a new gesture 
in SparshUI, the developer needs to create java classes which 
involve many low level implementation details including data 
serialization, implementing interfaces for gestures and events, and 
so on. Alternatively, GDL is a domain-specific language specially 
designed for gestures. It simplifies the process greatly by handling 
features such as method chaining, multi-step gestures, context-
oriented primitive types (e.g. distance: increasing) internally. 
Finally, custom return types that are often complicated and time 
consuming to implement with standard programming languages 
can be defined using GDL. 

3. REQUIREMENTS 
Based on the results of existing research on useful gestures [10] 
[16], our analyses of different multi-touch applications and 
comments from developers, we found a set of requirements for a 
gesture definition language. 

3.1 Separation of Concerns 
Associating system commands with gestures is an important part 
of developing multi-touch applications. At present, application 
developers not only write application specific code but also need 
to write the gesture recognition modules that recognize a gesture 
from raw touch data. The gesture recognition process is a 
complicated process that is often hard to fine tune and requires 
special background knowledge. As a result, developers either 
spend a significant amount of time to implement the correct 
gesture, or select a gesture that is easy to implement. In essence, 
application developers make compromises on an application’s 
usability. 

A domain-specific language (DSL) for definition gestures can 
hide the low level complexities by encapsulating complex 
mathematical calculations, pattern recognition algorithms and the 
like. This can help the developers focus on designing the gesture 



at a level that is most appropriate to the application context 
without worrying about the implementation details.  

3.2 Flexibility 
A specially designed DSL for gestures can help developers focus 
on application design instead of low-level gesture implementation 
complexities. However, it should also ensure that it provides the 
necessary flexibility to define the gesture that is meaningful to the 
application regardless of its complexity. The language should also 
allow gestures that may depend on device specific features (i.e. 
user identification, pressure sensitivity). 

Another important part of a gesture definition is to prepare the 
results when the gesture is detected. Some gestures need only the 
touch position (i.e. tap), whereas others need more detailed 
information like the boundary of an arbitrary shape drawn by the 
gesture (i.e. lasso), direction of the finger (i.e. one finger drag), 
etc. The language should provide options to define new return 
types as necessary. 

3.3 Extensibility 
Researchers are actively working on finding the best technology 
for multi-touch interaction. While existing technologies such as 
diffuse elimination, frustrated total internal reflection (FTIR) and 
capacitive touch are widely becoming available to consumers, 
new technologies continue to emerge in the research arena. For 
example, “UnMousePad” [12], a flexible and inexpensive multi-
touch input device that provides data on touch pressure in 
addition to touch position.  

As new technologies are discovered, the language should provide 
the infrastructure to add new features without affecting the 
existing applications. 

3.4 Device Independence 
Multi-touch interactions [4] were initially developed in the early 
1980’s. Since then a number of different technologies have been 
introduced by different industrial and research labs. Hardware 
vendors provide different multi-touch devices with similar 
features that are driven by different technologies. Due to a lack of 
standards in the field, these hardware vendors often end up 
implementing the device-to-software communication systems 
differently. As a result, applications sometimes become so 
dependent on a particular device that the developer needs to 
rewrite significant portions of their application to make it 
compatible for another device. For example, an application 
developed for the Microsoft Surface using their SDK, will not 
work on other devices like a SMART Table.  

The gesture definition language, along with its compiler and 
related framework, needs to be device independent so that it can 
work on multiple devices without any change in application code. 

4. IMPLEMENTATION 
In Section 3, we described how GDL can address some of the 
challenges of multi-touch application development. In this section 
we describe the language and how it can be used to solve the 
issues we discussed earlier.  

Figure 2 shows the structure of a simple gesture definition. A 
gesture definition contains three sections: a name that uniquely 
identifies a definition within the application; one or more validate 
blocks that contain combination of primitive conditions; and 
finally the return block that contains one or more return types. 

 

Figure 2: The Structure of Gesture Definition 

The name must be unique within the scope of the application. 
GDL is part of TouchToolkit that provides a set of commonly 
used gestures including zoom, drag, rotate, lasso, flicks in 
different directions, geometric shapes, and so on out of the box. If 
a developer wants to override any of the predefined gestures, they 
may use the same name. The compiler will override the 
predefined gesture with their defined gesture. However, if the user 
mistakenly defines two gestures with the same name, the compiler 
will throw an exception message. 

The validate block contains the logic for evaluating raw touch 
data to detect a gesture. The logics are defined using combination 
of primitive conditions, the smallest unit to evaluate the raw data.  

Table 1:  Example of Primitive Conditions 

No Primitive Condition 

1 Distance between points: increasing 

2 Touch limit: 1..4 

3 line1 perpendicularTo line2 

Primitive conditions can be of different types. Table 1 shows 
some examples of primitive conditions that can be used to define 
a behavior pattern of touch points (No.1), the range of touch 
points allowed in the specifying gesture (No.2), and a geometric 
condition between two previously recognized partial results of a 
multi-step gesture (No.3). Details on multi-step gesture are 
discussed in section 4.2. There are currently 15 primitive 
conditions available out of the box. A detailed list can be found in 
the project website at Error! Reference source not found.. 
Developers can also create their own primitive condition which is 
described in section 4.3. 

Multiple primitive conditions are virtually connected like a chain 
using the logical operators (i.e. and). The validation process 
follows the lazy evaluation approach where it starts from the first 
primitive condition in the chain and it only passes the valid data 
set (or multiple possible sets) to the next condition in the chain. 
This allows the system to improve performance by realigning the 
elements of the virtual chain without breaking the logic. When 
multiple validate blocks are defined, the compiler considers each 
block as a step in a multi-step gesture and performs the validation 
in the order it is defined. 

The last section in a gesture definition is the return block. Users 
can specify any number of return types. Each of the return type is 
linked to a return type calculator. The runtime gesture validation 
engine passes the final set of valid touch data to each of the return 
type calculators and finally sends the results to the application 
layer through a callback event. The common return types 
including touch position, bounding box, direction, unique id 
(when supported by hardware), rotation and many more are 
predefined out of the box.  



Like primitive conditions, return types are also extensible. We 
now describe how GDL addresses some of the key issues of 
multi-touch application development including the steps to create 
new primitive condition and return type.  

4.1 Hiding Low Level Complexities 
Let’s consider a scenario where a user may use a lasso gesture 
(Figure 3) to select some objects from a scattered collection of 
objects. 

 

Figure 3: Using the "Lasso" gesture to select multiple objects 
from a scattered view 

Implementing this gesture from scratch means processing the raw 
touch inputs that mostly contain the position and order of touch 
points. Thus, the developer needs to write code to check the 
following conditions at a very low level: 

 Is this the last action of current touch stroke? The 
gesture should be evaluated when the touch stroke ends. 

 Does the collection of points in the specific touch stoke 
represent a closed loop? 

 Is the area of the bounding box and the length of the 
path within a certain limit? 

 Is the area of the arbitrary shape created by the enclosed 
path within a certain limit? 

 Only one touch should be involved in this gesture. If 
multiple active touch points are available then it should 
consider each point individually. 

Some of the validation logic like the calculation of the area of an 
arbitrary shape could involve complex mathematical equations 
and requires proper testing. 

Figure 4 shows the GDL code to detect the lasso gesture using the 
above logic. Implementing this from scratch not only requires a 
lot of development time, but also additional time to test various 
possible user scenarios.  

 

Figure 4: Defining the lasso gesture using GDL 

Also, the order of condition validation can significantly affect the 
overall performance of the system. For example, it is quite simple 

to check the state of the touch action compared to calculating the 
enclosed area of an arbitrary shape. The GDL compiler can 
internally reorganize the order of condition validation, to improve 
performance. 

4.2 Flexibility 
Hiding low level implementation details can give the desired 
simplicity and improve productivity of developer. However, it 
should also provide the necessary flexibility to define gestures of 
various requirements. Let’s think about a scenario where a gesture 
may be composed of touches in multiple steps. For example, in a 
UML designer tool (i.e. Smart UML [14]) the user would do the 
following touches to create an “Actor” object. 

 

Figure 5: Sequence of touch strokes to create an "Actor" 

This means the developer not only needs to detect a gesture of 
certain characteristics, but also keep track of history to use the 
results of partial validation for later use. Keep in mind that we are 
talking about multi-touch scenarios that may involve multiple 
users and some of these partially validated results could end up 
representing different gestures. 

 

Figure 6: Defining Actor gesture for Use Case diagram 

To address this issue, GDL provides the syntax to define 
validation in multiple steps, as well as the storage of partial 
results for later use. The following code snippet (Figure 6) defines 
the actor gesture. In code, the intermediate results of the first and 
second steps are stored in variables defined using the “as” 
keyword. These variables can also store multiple partial results if 
necessary. 

4.3 Extensibility 
Multi-touch devices are evolving at a great speed. Until just 
recently, devices were mostly providing touch points and user 
identification for some specific devices [15]. Now some devices 
can provide touch directions [3] and information about the 
pressure of a touch [12]. The extensibility framework of GDL 
allows creating new primitive conditions as well as return types. 

The process of adding a new primitive condition can be described 
in two steps. First, update the language grammar that is used to 



parse the code. Figure 7 shows a code snippet of the grammar that 
is responsible for parsing the “TouchStep” primitive condition. 

 

Figure 7: A code snippet of GDL grammar to parse the 
“Touch Step” primitive condition 

Then, create a validator that takes raw touch data as input and 
does the validation. A class implementing an interface written in 
any .NET supported language can contain the computation logics. 
In the same way, we can also add new return types in the 
language.  

4.4 Device Independence 
In section 3.3, we discussed different technologies that are 
currently being used by different multi-touch device vendors. Due 
to the nature of the software development kits (SDK) provided by 
the hardware vendors to build multi-touch applications, the 
developed applications often become tightly coupled with the 
SDK. The result is that significant portions of the application need 
to be rewritten, to simply run it on another device with similar 
features. To overcome this, GDL is designed to be independent of 
these SDKs and applications developed using it, can easily be 
ported onto different devices without changing any application 
source code. In addition, GDL provides a domain-specific 
language to define custom gestures, whereas in most SDKs 
supplied by the hardware vendors, a limited set of predefined 
gestures [3][6] and low-level touch data is provided. Figure 8, 
shows how we can change a device with just one line of code. 
This can also be handled through configuration settings or 
automatic hardware detection. More detail on the internal 
architecture will be discussed in Section 5. 

 

Figure 8: Changing device/input source of the application 

The system also allows for the changing of devices while the 
application is running. This is useful for scenarios where 
additional external devices like the AnotoPen can be connected at 
run time or to connect virtual devices that can simulate certain 
activities for debugging, testing or demonstration. 

5. ARCHITECTURE 
The architecture of GDL can be divided into two sections: the 
gesture recognition framework and the hardware abstraction layer 
that provides the device independence. 

5.1 Gesture Recognition Framework 
The framework provides an interface to subscribe events for 
specific gestures in a method similar to how applications receive 

messages for mouse or keyboard events. Figure 9 shows the code 
snippet to subscribe a gesture named “zoom”. It also allows 
defining the scope of the gesture which is an image object in this 
case. 

 

Figure 9: The code snippet to subscribe "Zoom" gesture 

The framework passes the source of the gesture and return types 
specified in the gesture definition through the arguments of the 
callback method. 

Figure 10 shows the internal architecture of the framework that 
runs the gesture recognition engine. The gesture definitions and 
primitive conditions live outside the core framework and are 
loaded on demand. Therefore, the framework only loads the 
gesture definitions that are registered by the application at run 
time. This helps utilize the memory efficiently and also improves 
performance. 

 

Figure 10: The architecture of gesture recognition engine 

Gesture processor is responsible for efficiently evaluating the 
primitive conditions. For example, if a primitive condition is used 
in multiple gestures and needs to be evaluated under the same 
context then the gesture processor will take necessary steps to 
perform the validation once and reuse the output later. 

Figure 11 describes the workflow of the gesture recognition 
process. When touch data is received from the hardware layer, the 
toolkit evaluates the primitive conditions defined in validate 
blocks of the registered gestures. The framework internally 
handles the multi-user scenarios during result storage and 
evaluation of primitive conditions in each block. This is because 
gestures may appear in parallel when multiple users interact 
simultaneously. 

Once a gesture is recognized, the gesture processor calculates the 
requested return values and notifies the application through the 
event controller. 

5.2 Hardware Abstraction Layer 
We followed a similar approach as Echtler [13] to decouple the 
actual hardware from the application layer. This allows the 
gesture definition to be device independent. In this module, there 
is a hardware agnostic interface for capturing multi-touch inputs. 



This interface can be implemented for wide range of hardware 
platforms. We currently have implementations for Microsoft 
Surface, SMART Tabletop, Windows 7, Anoto Pen2 and TUIO 
protocol. The framework has an implementation for a virtual 
hardware that can be used to simulate multi-touch inputs. It can 
also playback the recorded interactions and run automated tests. 

 

Figure 11: The workflow of gesture recognition 

6. ONGOING AND FUTURE WORK 
Current research also focuses on generating gesture definitions 
from sample dataset of touch interactions and a visual 
representation of the gesture definition. This will allow users to 
define a gesture from sample touch data and use the visual DSL to 
fine tune the logical conditions. We are also working on adding 
additional logical operators in the language. 

7. LIMITATION 
The language and related frameworks are developed using 
Microsoft .NET and well integrated with Visual Studio IDE. This 
makes it easy to use for any application that runs on the same 
platform. It does not however, support application development 
with non-Microsoft languages. 

GDL is intended to be used for multi-user, multi-touch based 
applications. However, some other tabletop input techniques such 
as Smart Tags or physical object based interactions are not yet 
supported by this tool. 

8. CONCLUSION 
We introduced a domain-specific language to define gestures for 
multi-user, multi-touch scenarios. It helps the developers to focus 
on designing gestures that are the most natural and meaningful to 
application’s context without worrying about low level 
implementation details. The tool supports including syntax 
highlighting, on-the-fly error tracking also help reduce the 
learning curve. The gesture definition language is part of 
TouchToolkit - a software development kit to simplify the 
development and testing complexities of multi-touch applications. 
Both the language and the toolkit provide an extensibility 
framework to add new devices and interaction features to support 
new hardware. We believe GDL can help to produce real-world 
multi-touch applications with good quality within an affordable 
timeframe. 

                                                                 
2 http://www.anoto.com/ 

9. ACKNOWLEDGMENTS 
We would like to thank Teddy Seyed, Andy Phan, Darren 
Andreychuk, Theodore Hellmann and Ali Hosseini Khayat for 
their contribution on evaluating the language. 

10. REFERENCES 
[1] Selim, E., and Maurer, F. eGrid: 2010. A multi-user multi-

touch application to manage maps. 
http://egrid.codeplex.com/ 

[2] Wang, X., Ghanam, Y., Park, S. and Maurer, F. Using 
Digital Tabletops to Support Distributed Agile Planning 
Meetings, In Proc. of 10th International Conference on Agile 
Processes and eXtreme Programming (XP 2009), Demo 
Abstract, Pula, Italy, 2009 

[3] Microsoft Surface. 2010. http://www.microsoft.com/surface/ 

[4] Lee, SK., Buxton, W., and Smith K.C. 1985. A Multi-Touch 
Three Diemensional Touch-Sensitive Table. In Proceedings 
of the SIGCHI conference on Human factors in computing 
systems. CHI ’85. ACM, San Francisco, California. 

[5] SMART Table. http://www2.smarttech.com/st/en-
US/Products/SMART+Table/default.htm 

[6] About Windows 7 Touch. http://msdn.microsoft.com/enus/ 
library/dd371406(VS.85).aspx 

[7] J. O Wobbrock, A. D Wilson, and Y. Li, 2007. Gestures 
without libraries, toolkits or training: a $1 recognizer for user 
interface prototypes. In Proceedings of the 20th annual ACM 
symposium on User interface software and technology, 
UIST, Newport, RI. 

[8] Kratz, S., and Rohs, M. 2010. A $3 gesture recognizer: 
simple gesture recognition for devices equipped with 3D 
acceleration sensors. In Proc. of the 14th international 
conference on Intelligent user interfaces, IUI’10. 

[9] GestureWorks, a multitouch application framework for 
Adobe Flash and Flex. 2010. http://gestureworks.com/ 

[10] Wobbrock, J.O., Morris, M.R., and Wilson, A.D. 2009. User-
defined gestures for surface computing, In Proc. of the 27th 
int. conference on Human factors in computing systems. 

[11] Sparsh-ui. 2010. http://code.google.com/p/sparsh-ui/w/list 

[12] Ilya Rosenberg and Ken Perlin, “The UnMousePad - An 
Interpolating Multi-Touch Force-Sensing Input Pad” ACM 
Transactions on Graphics 28, no. 3 (7, 2009): 1.   

[13] Echtler, F., and Klinker, G. 2008. A multitouch software 
architecture. In Proc. of the 5th Nordic Conference on 
Human-Computer interaction: Building Bridges. 
NordiCHI’08. ACM, New York, NY 

[14] Zabir, O., Khandkar, S. Hossain, M., and Raihan, A. 2005. 
SmartUML. http://smartuml.sourceforge.net 

[15] Dietz, P. and D. Leigh, 2001. DiamondTouch: a multi-user 
touch technology. In Proceedings of the 14th annual ACM 
symposium on User interface software and technology. 
UIST'01, Orlando, Florida, USA. 

[16] North, C., Dwyer, T., Lee, B., Fisher,D., Isenberg,  P. 
Robertson, G.,  Inkpen, K., and Quinn, K.I. 2009. 
Understanding Multi-touch Manipulation for Surface 
Computing. Interact’09, Uppsala, Sweden.


