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Pyramid methods in image processing

The image pyramid offers a flexible, convenient multiresolution
format that mirrors the multiple scales of processing in the
human visual system.

Digital image processing is being used in
many domains today. In image enhance-
ment, for example, a variety of methods
now exist for removing image degrada-
tions and emphasizing important image in-
formation, and in computer graphics, dig-
ital images can be generated, modified, and
combined for a wide variety of visual
effects. In data compression, images may be
efficiently stored and transmitted if trans-
lated into a compact digital code. In ma-
chine vision, automatic inspection systems
and robots can make simple decisions based
on the digitized input from a television
camera.

But digital image processing is still in a
developing state. In all of the areas just
mentioned, many important problems re-
main to be solved. Perhaps this is most
obvious in the case of machine vision: we
still  do  not  know  how  to  build  machines
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that can perform most of the routine vis-
ual tasks that humans do effortlessly.

It is becoming increasingly clear that    
the format used to represent image data      
can be as critical in image processing as
the algorithms applied to the data. A dig-
ital image is initially encoded as an array     
of pixel intensities, but this raw format i s
not suited to most tasks. Alternatively, an
image may be represented by its Fourier
transform, with operations applied to the
transform coefficients rather than to the
original pixel values. This is appropriate
for some data compression and image en-
hancement tasks, but inappropriate for
others. The transform representation is par-
ticularly unsuited for machine vision and
computer graphics, where the spatial loca-
tion of pattem elements is critical.

Recently there has been a great deal of
interest in representations that retain spa-
tial localization as well as localization in
the spatial—frequency domain. This i s
achieved by decomposing the image into a
set of spatial frequency bandpass compo-
nent images. Individual samples of a com-
ponent image represent image pattern in-
formation that is appropriately localized,
while the bandpassed image as a whole rep-
resents information about a particular fine-
ness of detail or scale. There is evidence
that the human visual system uses such a
representation,1 and multiresolution sche-
mes are becoming increasingly popular in
machine vision and in image processing in
general.

The importance of analyzing images at
many   scales   arises   from    the    nature   of

images themselves. Scenes in the world
contain objects of many sizes, and these
objects contain features of many sizes.
Moreover, objects can be at various dis-
tances from the viewer. As a result, any
analysis procedure that is applied only at a
single scale may miss information at other
scales. The solution is to carry out analy-
ses at all scales simultaneously.

Convolution is the basic operation of
most image analysis systems, and convo-
lution with large weighting functions is a
notoriously expensive computation. In a
multiresolution system one wishes to per-
form convolutions with kernels of many
sizes, ranging from very small to very
large. and the computational problems
appear forbidding. Therefore one of the
main problems in working with multires-
olution representations is to develop fast
and efficient techniques.

Members of the Advanced Image Pro-
cessing Research Group have been actively
involved in the development of multireso-
lution techniques for some time. Most of
the work revolves around a representation
known as a "pyramid," which is versatile,
convenient, and efficient to use. We have
applied pyramid-based methods to some
fundamental problems in image analysis,
data compression, and image manipulation.

Image pyramids

The task of detecting a target pattern that
may appear at any scale can be approached
in several ways. Two of these, which in-
volve only simple convolutions, are illus-
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Fig. 1. Two methods of searching for a target pattern over
many scales. In the first approach, (a), copies of the target
pattern are constructed at several expanded scales, and
each is convolved with the original image. In the second
approach, (b),  a  single copy of  the  target  is convolved with

copies of the image reduced in scale. The target should be
just large enough to resolve critical details The two ap-
proaches should give equivalent results, but the second is
more efficient by the fourth power of the scale factor (image
convolutions are represented by 'O').

trated in Fig. 1. Several copies of the pat-
tern can be constructed at increasing scales,
then each is convolved with the image.
Alternatively, a pattern of fixed size can be
convolved with several copies of the image
represented at correspondingly reduced re-
solutions. The two approaches yield equi-
valent results, provided critical information
in the target pattern is adequately repre-
sented. However, the second approach i s
much more efficient: a given convolution
with the target pattern expanded in scale    
by a factor s will require s4 more arith-   
metic   operations  than   the  corresponding

convolution with the image reduced in
scale by a factor of s. This can be substan-
tial for scale factors in the range 2 to 32, a
commonly used range in image analysis.

The image pyramid is a data structure
designed to support efficient scaled convo-
lution through reduced image representa-
tion. It consists of a sequence of copies of
an original image in which both sample
density and resolution are decreased in
regular steps. An example is shown in Fig.
2a. These reduced resolution levels of the
pyramid are themselves obtained through a
highly  efficient   iterative  algorithm.   The

bottom, or zero level of the pyramid, G0,  
is equal to the original image. This is low-
pass-filtered and subsampled by a factor of
two to obtain the next pyramid level, G1.
G1 is then filtered in the same way and
subsampled to obtain G2. Further repeti-
tions of the filter/subsample steps generate
the remaining pyramid levels. To be pre-
cise, the levels of the pyramid are obtained
iteratively as follows. For 0 < l < N:

(1)

Gl  (i,j) Σ Σ
m n

 w (m,n) Gl-1 (2i+m,2j+n)

However,  it  is  convenient  to  refer  to this
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Fig. 2b. Levels of the Gaussian pyramid expanded to the size of the original image.
The effects of lowpass filtering are now clearly apparent.

Fig.3. Equivalent weighting functions.
The process of constructing the Gaus-
sian (lowpass) pyramid is equivalent to
convolving the original image with a set  
of Gaussian-like weighting functions,
then subsampling, as shown in (a). The
weighting functions double in size with
each increase in 1. The corresponding
functions for the Laplacian pyramid re-
semble the difference of two Gaussians,
as shown in (b).

process as a standard REDUCE opera-    
tion, and simply write

Gl = REDUCE [Gl-1].

We call the weighting function w(m,n)
the "generating kernel." For reasons of
computational efficiency this should be
small and separable. A five-tap filter was
used to generate the pyramid in Fig. 2a.

Pyramid construction is equivalent to
convolving the original image with a set of
Gaussian-like weighting functions. These
"equivalent weighting functions" for three
successive pyramid levels are shown in  
Fig. 3a. Note that the functions double in
width with each level. The convolution
acts  as a  lowpass filter  with the band limit

reduced correspondingly by one octave with
each level. Because of this resemblance to
the Gaussian density function we refer to
the pyramid of lowpass images as the
"Gaussian pyramid."

Bandpass, rather than lowpass, images
are required for many purposes. These may
be obtained by subtracting each Gaussian
(lowpass) pyramid level from the next-
lower level in the pyramid. Because these
levels differ in their sample density it i s
necessary to interpolate new sample values
between those in a given level before that
level is subtracted from the next-lower
level. Interpolation can be achieved by
reversing the REDUCE process. We call
this an EXPAND operation. Let Gl,k be       
the image obtained by expanding Gl k
times. Then Gl,k = EXPAND [G Gl,k-1] or, to be
precise, Gl,0 = Gl, and for k>0,

(2)

Gl,k(i,j) = 4 Σ Σ
m n

Gl,k-1 ( 
2

2
2

2
i m j n+ +

,  )

Here only terms for which (2i+m)/2 and
(2j+n)/2 are integers contribute to the    
sum. The expand operation doubles the    
size of the image with each iteration, so
that Gl,1, is the size of Gl,1, and Gl,1 is the
same size as that of the original image.
Examples of expanded Gaussian pyramid
levels are shown in Fig. 2b.

The levels of the bandpass pyramid, L0,
L1, ...., LN, may now be specified in terms
of the lowpass pyramid levels as follows:

Ll = Gl—EXPAND [Gl+1]                              (3)

= Gl—Gl+1,1.

The first four levels are shown in Fig. 4a.
Just  as   the  value   of  each  node   in  the

Gaussian pyramid could have been ob-
tained directly by convolving a Gaussian-
like equivalent weighting function with the
original image, each value of this bandpass
pyramid could be obtained by convolving  
a difference of two Gaussians with the
original image. These functions closely
resemble the Laplacian operators common-
ly used in image processing (Fig. 3b). For
this reason we refer to the bandpass pyra-
mid as a "Laplacian pyramid."

An important property of the Laplacian
pyramid is that it is a complete image
representation: the steps used to construct
the pyramid may be reversed to recover    
the original image exactly. The top pyra-
mid level, LN, is first expanded and added     
to LN-1 to form GN-1 then this array i s
expanded and added to LN-2 to recover        
GN-2, and so on. Alternatively, we may
write

G0 = ∑ Ll,l                                                        (4)

The pyramid has been introduced here as       
a data structure for supporting scaled image
analysis. The same structure is well suited
for a variety of other image processing
tasks. Applications in data compression
and graphics, as well as in image analysis,
will be described in the following sections.
It can be shown that the pyramid-building
procedures described here have significant
advantages over other approaches to scaled
analysis in terms of both computation cost
and complexity. The pyramid levels are
obtained with fewer steps through repeated
REDUCE and EXPAND operations than i s
possible with the standard FFT. Further-
more, direct convolution with large equiva-
lent weighting functions requires 20- to  
30-bit  arithmetic  to maintain  the same ac-
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Fig. 4b. Levels of the Laplacian pyramid expanded to the size of the original image.
Note that edge and bar features are enhanced and segregated by size.

curacy as the cascade of convolutions with
the small generating kernel using just 8-bit
arithmetic.

A compact code

The Laplacian pyramid has been described as
a data structure composed of bandpass
copies of an image that is well suited         
for scaled-image analysis. But the pyramid
may also be viewed as an image transform-
ation, or code. The pyramid nodes are then
considered code elements, and the equiva-
lent weighting functions are sampling
functions that give node values when con-
volved  with the  image.  Since  the  original

image can be exactly reconstructed from it's
pyramid representation (Eq. 4), the pyramid
code is complete.

There are two reasons for transforming   
an image from one representation to an-
other: the transformation may isolate criti-
cal components of the image pattern so     
they are more directly accessible to analy-
sis, or the transformation may place the     
data in a more compact form so that they     
can be stored and transmitted more effi-
ciently. The Laplacian pyramid serves both
of these objectives. As a bandpass filter,
pyramid construction tends to enhance
image features, such as edges, which are
important for interpretation. These  features

are segregated by scale in the various pyra-
mid levels, as shown in Fig. 4. As with the
Fourier transform, pyramid code elements
represent pattern components that are res-
tricted in the spatial-frequency domain. But
unlike the Fourier transform, pyramid code
elements are also restricted to local regions
in the spatial domain. Spatial as well as
spatial-frequency localization can be critical
in the analysis of images that contain
multiple objects so that code elements will
tend to represent characteristics of single
objects rather than confound the characteris-
tics of many objects.

The pyramid representation also permits
data compression.3 Although it has one
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Fig. 5. Pyramid data compression. The original image represented at 8 bits per-
pixel is shown in (a). The node values of tbe Laplacian pyramid representation of
this image were quantitized to obtain effective data rates of 1 b/p and 1/2 b/p.
Reconstructed images (b) and (c) show relatively little degradation.

third more sample elements than the orig-
inal image, the values of these samples    
tend to be near zero, and therefore can be
represented with a small number of bits.
Further data compression can be obtained
through quantization: the number of dis-
tinct values taken by samples is reduced     
by binning the existing values. This results
in some degradation when the image i s
reconstructed, but if the quantization bins
are carefully chosen, the degradation will
not be detectable by human observers and
will not affect the performance of analysis
algorithms.

Figure 5 illustrates an application of the
pyramid to data compression for image
transmission. The original image is shown
in Fig. 5a. A Laplacian pyramid represen-
tation was constructed for this image, then
the values were quantized to reduce the
effective data rate to just one bit per pixel,
then to one-half bit per pixel. Images recon-
structed from the quantized data are        
shown in Figs. 5b and 5c. Humans tend to
be more sensitive to errors in low-frequency
image components than in high-frequency
components. Thus in pyramid compression,
nodes at level zero can be quantized more
coarsely than those in higher levels. This i s
fortuitous for compression since three-quart-
ers of the pyramid samples are in the zero
level.

Data compression through quantization
may also be important in image analysis to
reduce the number of bits of precision
carried in arithmetic operations. For exam-           
ple, in a study of pyramid-based image
motion analysis it was found that data      
could be reduced to just three bits per
sample without noticeably degrading the
computed flow field.4

These examples suggest that the pyra-
mid is a particularly effective way of repre-
senting image information both for trans-
mission and analysis. Salient information
is enhanced for analysis, and to the extent
that quantization does not degrade analy-
sis, the representation is both compact and
robust.

Image analysis

Pyramid methods may be applied to anal-
ysis in several ways. Three of these will be
outlined here. The first concerns pattern
matching and has already been mentioned:
to locate a particular target pattern that    
may occur at any scale within an image,   
the pattern is convolved with each level of
the image pyramid. All levels of the pyra-
mid combined contain just one third more
nodes than there are pixels in the original
image. Thus the cost of searching for a
pattern at many scales is just one third     
more than that of searching the original        
image alone.

The complexity of the patterns that may
be found in this way is limited by the fact
that not all image scales are represented in
the pyramid. As defined here, pyramid     
levels differ in scale by powers of two, or
by octave steps in the frequency domain.
Power-of-two steps are adequate when the
patterns to be located are simple, but com-
plex patterns require a closer match be-
tween the scale of the pattern as defined in
the target array, and the scale of the pat-
tern as it appears in the image. Variants on
the pyramid can easily be defined with
squareroot-of-two and smaller steps. How-
ever, these not on]y have more levels, but
many  more samples,  and the computational

cost of image processing based on such
pyramids is correspondingly increased.

A second class of operations concerns  
the estimation of integrated properties
within local image regions. For example, a
texture may often be characterized by local
density or energy measures. Reliable esti-
mates of image motion also require the
integration of point estimates of displace-
ment within regions of uniform motion. In
such cases early analysis can often be
formulated as a three-stage sequence of
standard operations. First, an appropriate
pattern is convolved with the image (or
images, in the case of motion analysis).
This selects a particular pattern attribute to
be examined in the remaining two stages.
Second, a nonlinear intensity transforma-
tion is performed on each sample value.
Operations may include a simple threshold
to detect the presence of the target pattern,  
a power function to be used in computing
texture energy measures, or the product of
corresponding samples in two images used
in forming correlation measures for motion
analysis. Finally the transformed sample
values are integrated within local windows
to obtain the desired local property
measures.

Pattern scale is an important parameter  
of both the convolution and integration
stages. Pyramid-based processing may be
employed at each of these stages to facili-
tate scale selection and to support efficient
computation. A flow diagram for this three-
stage analysis is given in Fig. 6. Analysis
begins with the construction of the pyramid
representation of the image. A feature pat-
tern is then convolved with each level of the
pyramid (Stage 1), and the resulting
correlation values may be passed through
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Fig.6. Efficient procedure for computing integrated image properties at many scales.
Each level of the image pyramid is convolved with a pattern to enhance an elementary
image characteristic, step 1. Sample values in the filtered image may then be passed
through a nonlinear transformation, such as a threshold or power function, step 2.
Finally, a new "integration" pyramid is built on each of the processed image pyramid
levels, step 3. Node values then represent an average image characteristic integrated
within a Gaussian-like window.

methods have proved be useful. For ex-
ample, a method we call multi-resolution
coring may be used to reduce random     
noise in an image while sharpening details
of the image itself.5 The image is first
decomposed into its Laplacian pyramid
(bandpass) representation. The samples in
each level are then passed through a cor-
ing function where small values (which
include most of the noise) are set to zero,
while larger values (which include pro-
menent image features) are retained, or
"peaked." The final enhanced image i s    
then obtained by summing the levels of      
the processed pyramid. This technique i s
illustrated in Fig. 8. Figure 8a is the origi-
nal image to which random noise has been
added, and Fig. 8b shows the image en-
hanced through multiresolution coring.6

We have recently developed a pyramid-
based method for creating photographic
images with extended depth of field. We
begin with two or more images focused at

a nonlinear intensity transformation (Stage
2). Finally, each filtered and transformed
image becomes the bottom level of a new
Gaussian pyramid. Pyramid construction has
the effect of integrating the input values
within a set of Gaussian-like windows of
many scales (Stage 3).

As an example, integrated property esti-
mates have been used to locate the boun-
dary between the two textured regions of
Fig. 7a. The upper and lower halves of    
this image show two pieces of wood with
differently oriented grain. The right half of
the image is covered by a shadow. The
boundary between the shaded and unshad-  
ed regions is the most prominent feature in
the image, and its location can he detected
quite easily as the maximum of the gra-
dient of the image intensity (Fig. 7b). How-
ever, a simple edge-detecting operation such
as this gradient-based procedure cannot be
used to locate the boundary between the   
two pieces of wood. Instead it would iso-  
late the line patterns that make up the      
wood grain.

The texture boundary can be found
through the three-step process as follows:    
A Laplacian pyramid is constructed for     
the original texture. The vertical grain i s
then enhanced by convolving the image
with a horizontal gradient operator (Stage
1). Each pyramid node value is then    
squared, (Stage 2) and a new integration
pyramid is constructed for each level of      
the filtered image pyramid (Stage 3). In    
this way energy measures are obtained
within windows of various sizes. Figure 7c
shows level 2 of the integration pyramid  
for  level  L0  of the  filtered-image  pyramid.

Note that texture differences in the original
image have been converted into differen-
ces in gray level. Finally, a simple gra-
dient-based edge-detection technique can   
be used to locate the boundary between
image regions, Fig. 7d. (Pyramid levels
have been expanded to the size of the orig-
inal image to facilitate comparison.)

A third class of analysis operations con-
cerns fast coarse-fine search techniques.
Suppose we need to locate precisely a large
complex pattern within an image. Rather
than attempt to convolve the full pattern
with the image, the search begins by con-
volving a reduced-resolution pattern with    
a reduced-resolution copy of the image.
This serves to roughly locate possible oc-
currences of the target pattern with a mini-
mum of computation. Next, higher-resolu-
tion copies of the pattern and image can    
be used to refine the position estimates
through a second convolution. Computa-
tion is kept to a minimum by restricting    
the search to neighborhoods of the points
identified at the coarser resolution. The
search may proceed through several stages
of increased resolution and position refine-
ment. The savings in computation that    
may be obtained through coarse-fine search
can be very substantial, particularly when
size and orientation of the target pattern
and its position are not known.

Image enhancement

Thus far we have described how pyramid
methods may be applied to data compres-
sion and image analysis. But there are other
areas     of    image     science     where     these

different distances and combine them in a
way that retains the sharp regions of each.
As an example, Figs. 9a and 9b show two
pictures of a circuit board taken with the
camera focused at two different depth-
planes. We wish to construct a composite
image in which all the components and      
the board surface are in focus. Let LA and    
LB be Laplacian pyramids for the two
original images in our example. The low-
frequency levels of these pyramids should
be almost identical because the low spa-
tial-frequency image components are only
slightly affected by changes in focus. But
changes in focus will affect node values in
the pyramid levels where high-spatial-
frequency information is encoded. How-
ever, corresponding nodes in the two py-
ramids will generally represent the same
feature of the scene and will differ primar-
ily in attenuation due to blur. The node    
with the largest amplitude will be in the
image that is most nearly in focus. Thus,
"in focus" image components can be se-
lected node-by-node in the pyramid rather
than region-by-region in the original im-
ages. A pyramid LC is constructed for the
composite image by setting each node equal
to the corresponding node in LA or LB      
that has the larger absolute value:

If |Lal (i,j) | > | LEl (i,i) |,
then LCl  (i,j) = LAl (i,j)

otherwise. LCl (i,j) = LBl (i,j)
(7)

The composite image is then obtained sim-
ply by expanding and adding the levels of
LC. Figure 9c shows an extended depth-of-
field image obtained in this way.
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Fig. 7. Texture boundary detection using energy measures. The original image, (a),
contains two pieces of wood with differently oriented grain separated by a horizon-     
tal boundary. The right half of this image is in a shadow, so an attempt to locate     
edges based on image intensity would isolate the boundary of the shadow region,       
(b). In order to detect the boundary between the pieces of wood in this image we         
first convolve each level of its Laplacian pyramid with a pattern that enhances     
vertical features. At level L0 this matches the scale of the texture grain on the lower
half of the image. The nodes at this level are squared and integrated (by construct-      
ing an additional pyramid) to give the energy image in (c). Finally, an intensity           
edge-detector applied to the energy image yields the desired texture boundary.

Fig. 8. Multiresolution coring. Part (a)
shows an image to which noise has      
been added to simulate transmission
degradation. The Laplacian pyramid was
constructed for this noisy image, and
node values at each level were "cored."
As a result, much of the noise is re-
moved while prominent features of the
original image are retained in the re-
constructed image, (b).

A related application of pyramids con-
cerns the construction of image mosaics.
This is a common task in certain scientific
fields and in advertising. The objective i s
to join a number of images smoothly into a
larger mosaic so that segment boundar-    
ies are not visible. As an example, suppose
we wish to join the left half of Fig. 10a
with the right half of Fig. 10b The most
direct method for combining the images i s
to catinate the left portion of Fig. 10a with
the right portion of Fig. 10b. The result,
shown in Fig. 10c, is a mosaic in which    
the boundary is clearly visible as a sharp
(though generally low-contrast) step in gray
level.

An alternative approach is to join image
components smoothly by averaging pixel
values within a transition zone centered on
the join line. The width of the transition
zone is then a critical parameter. If it i s    
too narrow, the transition will still be vis-
ible as a somewhat blurred step. If it is too
wide, features from both images will be
visible within the transition zone as in a
photographic double exposure. The blur-
red-edge effect is due to a mismatch of        
low frequencies along the mosaic boun-
dary, while the double-exposure effect i s    
due to a mismatch in high frequencies. In
general, there is no choice of transition
zone width that can avoid both defects.

This dilemma can be resolved if each
image is first decomposed into a set of
spatial-frequency bands. Then a bandpass
mosaic can be constructed in each band     
by use of a transition zone that is compar-
able in width to the wavelengths repres-
ented in the band. The final mosaic is then
obtained by summing the component band-
pass mosaics.

The computational steps in this "multire-
solution splining" procedure are quite sim-
ple when pyramid methods are used.6 To
begin, Laplacian pyramids LA and LB are
constructed for the two original images.
These decompose the images into the re-
quired spatial-frequency bands. Let P be the
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Fig. 9. Multifocus composite image. The original images with limited depth of field    
are shown in (a) and (b). These are combined digitally to give the image will an
extended depth of field in (c).

Fig. 10.  Image mosaics. The left half of image (a) is catinated with the right half of
image (b) to give the mosaic in (c). Note that the boundary between regions is        
clearly visible. The mosaic in (d) was obtained by combining images separately in     
each spatial frequency band of their pyramid representations then expanding and
summing these bandpass mosaics.

summed to yield the final mosaic, Fig. 10d.
Note that it is not necessary to average node
values within an extended transistion zone
since this blending occurs automatically as
part of the reconstruction process.

Conclusions

The pyramid offers a useful image
representation for a number of tasks. It i s
efficient to compute: indeed pyramid
filtering is faster than the equivalent
filtering done with a fast Fourier transform.
The information is also available in a
format that is convenient to use, since the
nodes in each level represent information
that is localized in both space and spatial
frequency.

We have discussed a number of examples
in which the pyramid has proven to be
valuable. Substantial data compression
(similar to that obtainable with transform
methods) can be achieved by pyramid
encoding combined with quantitization and
entropy coding. Tasks such as texture
analysis can be done rapidly and
simultaneously at all scales. Several
different images can be combined to form a
seamless mosaic, or several images of the
same scene with different planes of focus
can be combined to form a single sharply
focused image.

Because the pyramid is useful in so many
tasks, we believe that it can bring some
conceptual unification to the problems of
representing and manipulating low-level
visual information. It offers a flexible,
convenient multiresolution format that
matches the multiple scales found in the
visual scenes and mirrors the multiple scales
of processing in the human visual system.

locus of image points that fall on the
boundary line, and let R be the region to the
left of P that is to be taken from the left
image. Then the pyramid LC for the
composite image is defined as:

If the sample is in R, then

LCl (i,j) = LAl (i,j)
If the sample is in P,then

LCl (i,j) = LBl (i,j),
Otherwise,

LCl  = LCl (i,j)                           (8)
The  levels   of  LC  are   then   expanded   and
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