
Taxonomy and Overview of Multi-touch Frameworks:
Architecture, Scope and Features

Dietrich Kammer, Mandy Keck
Technische Universität Dresden
dietrich.kammer@tu-dresden.de

Georg Freitag, Markus Wacker
Hochschule für Technik und Wirtschaft Dresden

freitag@htw-dresden.de

ABSTRACT
Multi-touch hardware has only recently entered the
mainstream of information technology. Interaction
designers, product developers and users have been
influenced by this development. In order to build multi-
touch applications, programmers have created various
reusable frameworks. To obtain an overview of this
diversity, we present a list of criteria to classify, evaluate,
and select multi-touch frameworks. Our main contribution
consists in a taxonomy that we have elaborated out of a
vast list of existing projects, of which we present nine
freely available ones here. To promote the development of
multi-touch frameworks, our list of criteria reveals four
main areas for future work.

Keywords
Software engineering, frameworks, multi-touch, natural
user interface, gesture-based interfaces

INTRODUCTION
A multitude of frameworks related to multi-touch has
emerged in the last years, most of which are still under
development and might not prove stable. In addition,
considerable restrictions with regard to flexibility exist
when designing multi-touch enabled applications. By
examining current architectures, it is possible to observe
recurring solutions that have proven to be effective.
Moreover, unique approaches can be identified and
evaluated. This research was our starting point for a top-
down approach towards a taxonomy of multi-touch
frameworks. With the help of our scheme, new
requirements arising from a designer’s point of view can be
easily integrated. This classification leads to a common
understanding and an easy comparison of new emerging
frameworks.
We consider software libraries that support the programmer
in implementing fully functional multi-touch applications.
The frameworks presented offer diverse components and
tools and have reached a certain level of maturity. While
outdated projects have been disregarded, unique
approaches are covered, even if they have received little
attention until now.

LIST OF CRITERIA
The classification of multi-touch frameworks stem from the
different capabilities of supported hardware devices and
concrete use cases that are being addressed. Across our list
of criteria (Figure 1), frameworks can have different
focuses and offer programming support of varying degrees.

Features

Scope

Architecture

Tangible Objects Touches

Event System

Hardware
Independence

Platform
Independence

Gesture Parameters

Standard Gestures

Gesture Extensibility

Visualization support

Figure 1: Criteria for multi-touch frameworks.

The lower level of the section Architecture in our list of
criteria is concerned with the applicability of frameworks.
Independence of specific hardware setups or operating
systems is a key characteristic for distributing applications
across multiple platforms and devices. We consider the
event system as the bridge between the client application
and the framework. The modality of information exchange
is a key concern to the programmer.
One main scope of a framework is the recognition of
touches and tangible objects. While some frameworks
implement both, they are mostly focused on one aspect.
Since the concern of this contribution is multi-touch, purely
single touch frameworks (like iGesture [5]) are not
considered. Looking at frameworks from a programmer’s
perspective, there are various parameters that can be
extracted from touch-interaction. Likewise, there are
different degrees of freedom when dealing with tangible
objects. Either specific fiducial markers need to be applied,
or arbitrary shapes can be recognized.
In addition to architectural concerns and the scope of a
framework, specific features need to be addressed. Support

of standard gestures is an important factor when choosing a
multi-touch framework. We consider online gestures,
which can also be regarded as direct manipulations like
scaling and rotating. In contrast, offline gestures are
usually processed after the interaction is finished; e. g. a
circle is drawn to activate a context menu. A similar
distinction in gestures and manipulations is made by [4].
Gesture extensibility is another important aspect. Most
frameworks provide the programmer with direct access to
the raw touch data. Moreover, further support is
conceivable by providing gesture recognition facilities or
by means of a gesture abstraction [10]. By identifying
properties of gestures, e. g. motion vectors, speed, or
pressure, programmers can create new gestures with more
ease, or combine existing standard ones. Finally,
frameworks can be judged by their visualization support.
Depending on the application context, 2D or 3D graphics
should be available. In any case, the availability of standard
widgets that are multi-touch enabled is crucial. Again, the
extension of these widgets should be flexible and
straightforward. This gives a greater freedom to the
designers and developers of novel multi-touch interfaces.

REVIEW OF FRAMEWORKS
The review of existing frameworks is organized according
to the overall architecture, the scope, and the provided
features as discussed in the previous section. We seek to
identify categories for each criterion and discuss the
properties of each category. In this comparison we consider
Sparsh-UI [14] and MT4j [3] which are realized in Java, as
well as the Surface SDK [12] and Breezemultitouch [13] as
Windows Presentation Foundation (WPF) frameworks.
Miria [1] is based on WPF as well, but is focused on web
development with Silverlight. In addition, GestureWorks
[7] is based on Flash, PyMT [6] on Python, Grafiti [14] is
written in C# and libTISCH [2] in C++.

Architecture
Across the available frameworks, commonalities with
respect to the underlying software architecture can be
identified.

Platform independence
Most frameworks support various hardware setups by
working with the TUIO protocol. It is a network protocol
based on UDP which supplies information about touch
events and tangible objects [9]. The notable exception is
the Surface SDK which supports Windows 7 multi-touch
events and specific drivers for Windows Vista. Both, TUIO
and Windows 7 events, are natively supported by Miria and
PyMT. Sparsh-UI, MT4j, libTISCH, and GestureWorks
offer the possibility to implement appropriate drivers for
arbitrary hardware devices and inputs.
Independence of operating systems can be achieved using
cross-platform runtime environments like Java, Flash, or
Silverlight. MT4j and Sparsh-UI rely on Java’s virtual
machines, whereas GestureWorks and Miria, respectively,
are based on the last two. Available for all major operating
systems is a platform specific interpreter for Python which

runs applications based on PyMT. Surface SDK and
Breezemultitouch target the Microsoft® Windows platform
by relying on WPF. Grafiti and libTISCH are realized in
C# and C++, respectively. Thus, applications can be cross-
compiled to provide executable code for different
platforms.
Programmers are usually constrained to the programming
language used by the framework. Exceptions are Sparsh-UI
and libTISCH. Due to the particularities of their event
system, applications can be implemented in the
programming language of choice.

Event system
Most frameworks rely on the event paradigm supported by
their host language. Events are being raised by gesture
recognizers and processed by the registered listener
methods. Exceptions are Sparsh-UI and Libtisch: Sparsh-
UI provides a gesture server, which achieves a loose
coupling between gesture processing and the application.
Events are transported via a network protocol, which
makes interfaces to various clients possible. Clients can be
implemented in any programming language that allows
network communication. Similarly, libTISCH provides a
gesture recognition layer which communicates via a
network protocol as well.
Another distinction can be made with regard to the
information contained in a gesture event. PyMT,
Breezemultitouch, Miria, and MT4j route touch data to
components of the application, where gesture recognition
takes place. Sparsh-UI, libTISCH, GestureWorks, and
Grafiti process this data within the framework and aim to
provide information about performed gestures only. Thus,
gesture recognition is either centralized or decentralized. In
the centralized scenario, a gesture registry is provided and
an abstraction of the user interface (UI) is required. The
registry queries the application about its visual components
in order to associate gestures with concrete elements of the
UI. Only the position and dimension of these elements are
important for the abstraction.

Scope
The support for tangible objects and touch information
differs across the frameworks and depends on the
architecture decisions described above.

Tangible objects
As discussed in the section Architecture, most frameworks
employ the TUIO protocol, which inherently supports
tangible objects. Their ID, position, and rotation are
reported to applications. However, among the frameworks
in discussion, only Grafiti and Surface SDK actually focus
tangible objects. Mostly, tangibles are recognized based on
fiducial markers (tags) that are attached on a flat area of the
object. In addition, the Surface SDK is the first framework
to show progress towards the recognition of arbitrary
objects without the use of markers. Moreover, this SDK
can identify a large number of distinct objects, as it
supports two variants of markers. Breezemultitouch is
completely oblivious of tangibles.

Touches
The TUIO protocol supplies IDs of touches and a history of
coordinates. Additionally, Breezemultitouch and libTISCH
calculate the velocity, and MT4j provides a direction vector
of the touch. Depending on the hardware, some
frameworks provide more information. For instance,
libTISCH supplies the shape of a blob based on custom
shadow tracking hardware. Similar to the Surface SDK, the
orientation of a finger is provided as well.
By default, Sparsh-UI supplies parameters of gestures
instead of touches. This is due to its centralized gesture
recognition. In this case, provided parameters depend on
the triggered gesture.
As a notable exception, Grafiti maintains target lists of
touches. Elements of the UI and tangible objects that are
close to a touch during its movement are collected in a
target list. This can help the application programmer to
process the impact of a performed gesture on all the
relevant elements.

Features
Basic features of frameworks are the support of standard
gestures as well as options of implementing new ones. In
addition, the user is assisted to varying degrees in creating
a UI.

Standard gestures
All frameworks support online processing of gestures. The
classic ones like scaling, rotation, and translation of objects
are possible. Only PyMT explicitly supports offline
gestures. Other frameworks use the online processing
facilities to make offline gestures possible. Simple gestures
like Tap, Double Tap, or Flick are included in each
framework. Grafiti and MT4j additionally implement a
Lasso gesture to select multiple objects.
Gestures are mainly processed depending on components
of the UI. In addition, Grafiti and MT4j introduce the
notion of global gestures. They are relevant throughout the
application and may take precedence over component
based gestures. For instance, Grafiti provides an
appropriate configuration variable to prioritize global
gestures [14].

Gesture extensibility
In order to implement new gestures, interfaces are provided
to establish a common infrastructure. New gestures result
from extending these interfaces and implementing
appropriate algorithms. The Surface SDK only provides
access to raw touch data. Depending on the architecture,
gestures are instantiated by the central gesture registry or
by each component. Responsibility for analyzing input is
thus delegated to the components or remains within the
framework.
In contrast to other frameworks, libTISCH implements an
abstraction of the properties of a gesture. As a result, it is
possible to select the information which is included in a
gesture event, for instance the velocity and amount of
touches associated with this gesture.

Visualization support
Multi-touch frameworks must either provide a set of visual
components that are extensible, or allow the creation and
integration of new components. Miria and Surface SDK
build upon the infrastructure of WPF and provide multi-
touch enabled controls. In contrast, Breezemultitouch
implements wrapper classes which route multi-touch input
to existing WPF controls. GestureWorks extends basic
Flash containers to process multi-touch input. MT4j and
PyMT provide custom components based on OpenGL.
Sparsh-UI, libTISCH, and Grafiti explicitly support custom
widget libraries by means of their UI abstraction.
Visualization support for both 2D and 3D graphics is
available through DirectX for WPF based frameworks, or
OpenGL. Flash applications realized with GestureWorks
rely on external libraries for 3D support.

DISCUSSION
In order to discuss the presented frameworks and their
specific properties, we propose two points of view: the
product developer and the interaction designer which have
different requirements. With the help of the criteria list, the
different approaches will be analyzed and matched to the
appropriate solutions presented in the frameworks
discussed.

Product developer
Product development teams require the rapid creation of
stable applications. A solid foundation like WPF is
recommended, as it has a strong reputation in industry. In
addition, a large community is devoted to the development
of WPF applications. Especially with a product line in
mind, the portability of its large widget base across the
Windows platform is an advantage. If the limitation to
Windows is not acceptable, cross-platform solutions need
to be considered.
We find the concept of a gesture server beneficial to
product developers, although it has only been
prototypically implemented by more research focused
frameworks like Sparsh-UI and libTISCH. Gesture servers
provide events to many clients, are exchangeable and
developed independently of their clients. However, servers
require a more complex architecture and introduce some
communication delay.
Since gestures are encapsulated, feedback and feed-forward
is not easily customizable by clients. In the future,
functionality of the gesture server can migrate into the
operating system, minimizing delays as well as providing a
uniform interface.

Interaction designer
We consider an interaction designer with a strong focus on
prototyping. The freedom to create visuals can be
hampered by a fixed set of controls. This is the case with
WPF, although it allows customization through design
tools. Frameworks like PyMT and MT4j offer a greater
freedom.

MT4j

SparshUI

Surface SDK

Breezemultitouch

Miria

Grafiti

libTISCH

PyMT

GestureWorks

FeaturesScopeArchitecture

TUIO
Device

Adapter Tangibles
Touch
Params

Gesture
Params

Gesture
Events

Standard
Gestures

Gesture
Extensibility

Visualization
support

supported

supported

supported

supported

not supported

not supported

not supported

focus

focus

super class

super class

super class

super class

super class

wrapper class

raw data

raw data and
recognition

support

raw data and
recognition

support

central

central

central

decentral

decentral

decentral

decentral

decentral

central

custom widgets

custom widgets

custom widgets

custom widgets

-

-

WPF multitouch
controls

WPF multitouch
controls

WPF multitouch
controls

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

online

online

online

online

online

online

online

online

online�
offline

Win7

☼cross-platform
single platform ○

<>
><gesture server

integrated library

<☼>

<○>

>☼<

<○>

<☼>

<☼>

>☼<

<☼>

<☼>

Table 1: Comparison of frameworks according to the list of criteria
The decentralized approach to gesture recognition found in
most frameworks allows complete freedom to design new
gestures. This is due to the full control of touch events. At
the stage of prototyping, the necessary information
contained in a gesture event is not fixed. The effort to
define and implement specific gesture events can be
avoided.
While full control over touch events is beneficial, the detail
of their parameters should not be excessive. As a common
base, all frameworks in discussion provide a history of the
coordinates of a touch contact along with an ID. Some
frameworks add direction or velocity to the touch event.
The Surface SDK collects data on the blob-size and
orientation of a finger as well. We argue that recognition
support should be available to interaction designers, but
made optional. Instead of pushing full information to
clients, it should be possible to pull more information about
current touch events from the framework. The notion of
gesture building blocks introduced in libTISCH shows how
application programmers can select important parameters
of a gesture for the appropriate event.

CONCLUSIONS AND FUTURE WORK
The list of criteria presented in this contribution has been
created from observing current frameworks and analyzing
the requirements of software developers. Table 1 gives an
overview of the considered frameworks by means of our
criteria. For future work, we identify four main focuses.

Offline gestures
Only PyMT has an explicit support for offline gestures.
Ongoing manipulations are the main concern of other
multi-touch frameworks. Amazingly enough, older
frameworks like iGesture [5] that are focused on single-

touch environments, offer an extensive support for offline
gestures. The definition, storage, and recognition of new
gestures are aided by the graphical iGesture tool.

Gesture extensibility
Gesture extensibility is another important concern. A
common abstraction for multi-touch gestures could ease the
definition of new gestures [11]. So far, developers are
limited to standard gestures and processing of raw input
data. In addition, many frameworks offer interfaces that
can be extended to create and register new gestures.
Recognition support is offered by Grafiti with a target list
for each touch. Alternatively, PyMT includes tools to
extract basic geometric features. These approaches are first
steps towards a comprehensive gesture recognition support.

Integration of devices
We see a potential in combining different input devices by
finding a way to unify their inputs. For instance, libTISCH
and MT4j introduce unified input events. In this context,
TUIO as the de-facto standard for touch devices has to be
addressed. It is supported by all open source frameworks
we considered. On the other hand, Windows 7 gesture
events constitute an industry standard which has to be dealt
with as well. It has to be noted that the new TUIO 2.0
standard is intended to cover a greater array of devices and
interactive surfaces [8]. One existing project that aims to
integrate various devices is the Squidy library [10].

Gesture server
As mentioned in the discussion, the idea of gesture servers
can be implemented as a service of the operating system.
Consistent visualizations of feedback and feed-forward
throughout all applications are one potential of this
approach [16]. More importantly, performance benefits and

stable applications are to be anticipated. As discussed
previously, detailed information about touches should be
made available by the intended service when needed.

ACKNOWLEDGMENTS
This work has been partly supported by the European
Union and the Free State Saxony through the European
Regional Development Fund (ERDF) and the Ministerium
für Wissenschaft und Kunst through the project
Gestenbasierte Interfaces. We thank the students Dana
Henkens and Stefan Wagner who participated in this
research.

BIOGRAPHIES
Dietrich Kammer is a research associate and doctoral
candidate at the Technische Universität Dresden. His
interests include component oriented software engineering
and computer graphics. Currently his work is centered on
multi-touch technology. A key interest is the formalization
of gestural interaction for use in appropriate frameworks.
Georg Freitag is a research associate and doctoral
candidate at the University of Applied Sciences in Dresden.
His interests are novel human-computer interfaces,
interaction design and information visualization. At
present, the focus of his work is on programming
environments and frameworks for multi-touch application
development.
Mandy Keck is a research assistant at the Technische
Universität Dresden. Her interests are information
visualization and the design of tangible user interfaces. The
focus of her work is currently on interaction concepts for
multi-touch devices and the evaluation of appropriate
visualizations.
Markus Wacker is professor for computer graphics at the
University of Applied Sciences in Dresden. His research
interests are VR/AR applications, multi-touch
development, and gesture based interfaces.

REFERENCES
1. Codeplex Open Source Community. MIRIA SDK –

Multitouch, Gestures and Multipurpose Input.
Retrieved: 2010-04-30. Available at:
http://miria.codeplex.com/

2. Echtler, F., and Klinker, G. A multitouch software
architecture. In Proceedings of the 5th Nordic
Conference on Human-Computer interaction: Building
Bridges (Lund, Sweden, October 20 - 22, 2008).
NordiCHI '08, vol. 358. ACM, New York, NY, 463-
466.

3. Fraunhofer-Institute for Industrial Engineering IAO.
Multi Touch for Java. Website. Retrieved: 2010-04-30.
Available at: http://www.mt4j.org/

4. George, R., and Blake, J. Objects, Containers, Gestures,
and Manipulations: Universal Foundational Metaphors
of Natural User Interfaces. CHI 2010, April 10-15,
2010, Atlanta, Georgia, USA.

5. Global Information Systems Group. iGesture: A
General Gesture Recognition Framework, ETH Zurich,
2007. Retrieved: 2010-04-30. Available at:
http://www.igesture.org/

6. Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S., and
Serra, T. PyMT: A Post-WIMP Multi-Touch User
Interface Toolkit. Proceedings of Tabletop 2009.

7. Ideum. GestureWorks – true Multitouch for Flash.
Website. Retrieved: 2010-04-30. Available at:
http://gestureworks.com/

8. Kaltenbrunner, M. TUIO 2.0 Protocol Specification
(Draft). January 18th, 2010. Website. Retrieved: 2010-
04-30. Available at: http://www.tuio.org/?tuio20

9. Kaltenbrunner, M., and Bovermann, T. & Bencina, R.
& Costanza, E. TUIO - A Protocol for Table Based
Tangible User Interfaces. Proceedings of the 6th
International Workshop on Gesture in Human-
Computer Interaction and Simulation (GW 2005),
Vannes (France)

10. König, A. W., Rädle, R., Reiterer, H. Interactive Design
of Multimodal User Interfaces Reducing technical and
visual complexity. Journal on Multimodal User
Interfaces. Springer Berlin / Heidelberg, 2010

11. Lao, S., Heng, X., Zhang, G., Ling, Y., and Wang, P. A
gestural interaction design model for multi-touch
displays. In Proceedings of the 2009 British Computer
Society Conference on Human-Computer interaction.
British Computer Society Conference on Human-
Computer Interaction. British Computer Society,
Swinton, UK, 440-446.

12. Microsoft Developer Center. Microsoft Surface SDK.
Website. Retrieved: 2010-04-30. Available at:
http://msdn.microsoft.com/en-us/library/ee804845.aspx

13. Mindstorm Inc. Breezemultitouch – Multi-touch
framework for WPF 3.5. Website. Retrieved: 2010-04-
30. Available at:
http://code.google.com/p/breezemultitouch/

14. De Nardi, A. Gesture Recognition mAnagement
Framework for Interactive Tabletop Interfaces. Diploma
thesis at University of Pisa. December 2008. Available
at: http://grafitiproject.wordpress.com/

15. Ramanahally, P., Gilbert, S., Niedzielski, T., Velázquez,
D., and Anagnost, C. Sparsh UI: A Multi-Touch
Framework for Collaboration and Modular Gesture
Recognition. Proceedings of the World Conference on
Innovative VR. 2009

16. Wigdor, D., Williams, S., Cronin, M., Levy, R., White,
K., Mazeev, M., and Benko, H. Ripples: Utilizing Per-
Contact Visualizations to Improve User Interaction with
Touch Displays. UIST 2009, October 4-7, Victoria,
British Columbia, Canada.

