
Extending 2D Object Arrangement with
Pressure-Sensitive Layering Cues

Philip L. Davidson, Jefferson Y. Han
Perceptive Pixel, Inc

111 8th Avenue, 16th Fl
New York, NY 10011

philipd@perceptivepixel.com

ABSTRACT
We demonstrate a pressure-sensitive depth sorting
technique that extends standard two-dimensional (2D)
manipulation techniques, particularly those used with multi-
touch or multi-point controls. We combine this layering
operation with a page-folding metaphor for more fluid
interaction in applications requiring 2D sorting and layout.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors, Algorithms

Keywords: Direct Manipulation, Multi-touch, Pressure,
Sorting, Tilt

INTRODUCTION
Direct manipulation encourages free-form grouping
and arrangement of objects, particularly when Rotate-
Scale-Translate (RST) methods give immediate feedback
for controlling four degrees of freedom at a user’s
fingertips. While many methods for RST have been
explored, layering operations use simple rules such
as ‘always bring to the front’, or are simply left out.

Fine control of object layering involves dedicated UI
components. Traditional 2D editing programs supply either
a drag-and-drop ‘layer palette’, displaying a list of the
elements to be reordered, or a set of contextual operations
(key command or menu) on a selected element to send it up,
down, to the front, or to the back. These controls tend to
respect global element order, rather than the relative order;
thus, switching the order of two overlapping objects may
involve a sequence of several commands. Often, the simplest
way to reorder elements is often to send both objects “to the
back” or “to the front” sequentially, potentially breaking
the layering order for scene elements. Our approach uses
pressure cues to directly control pairwise layering constraints
in conjunction with two-dimensional transformation.

PREVIOUS WORK

Piling Interfaces
Mander et al. [8] use ‘piles’ to represent a folder as an
intentionally untidy stack of icons. This was motivated
by real-world document manipulation, where the uneven
edges of a pile allow for a quick visual search of its content.
Beaudouin-Lafon [2] introduces a number of novel window
interactions, including ‘loose’ window collections, and
demonstrate a folding gesture for a stack of documents
(as in [8]), where a user ‘pulls’ the corner of a foreground
element to reveal the contents of the element behind it.
The ‘Bumptop’ environment described by Agarawala et al.
[1] uses pen-based interaction to drag and toss document
objects around into physically simulated piles. Ordering
and layout actions are inherently possible, but are limited by
side effects of the simulation environment. Instead, precise
ordering gestures appear when objects are grouped into more
formal groups or stacks. Terrenghi et al. [11] performed a
user study of photograph sorting and puzzle manipulation on
real tabletops in comparison to interaction patterns using a
surface computing environment. While they did not strictly
analyze layering operations, several interesting observations
were made regarding the difference in physical and virtual
interaction, even when both environments allowed for multi-
point and bimanual control.

Layer Arrangement
Ramos et al. [10] present two novel techniques for 2D layering
operations. The first provides a graphical representation
of a cascaded stack of layers above the selected elements,
and using a sequential drag and drop model. The second
uses a ‘splatter’ effect to radially distribute overlapping.
Concentric rings are then used as a proxy for rearranging
object order. Dragicevic [5] describes several methods for
‘leafing’ through the exposed edges of a stack of windows
in a drag-and-drop action, by sequentially folding back
document windows, as in [2], as the cursor travels back and
forth across the document edge. The work does not discuss
pressure as an interaction toggle; instead, a speed-limit is
used to distinguish the leafing behavior from ordinary cursor
motion.

DESIGN CONSIDERATION FOR LAYERING TASKS
Pressure data provides useful sideband information with
multi-point sensing, and tilt control uses position and
pressure to generate a three degree-of-freedom control
(normal direction and depth). Our tilt gesture uses a direct

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

87

manipulation metaphor, but the tilt value is used as input to
the layering algorithm, instead of imparting rotation.

Minimizing UI Detritus
One benefit of multi-point RST controls is that they require
less decoration of an object – once a user learns the basics,
no visual feedback is needed to indicate that an object is
in “rotation mode” or “scaling mode” – they are inherent
properties of the object. The absence of this modality
encourages a simple transition between object manipulation
and other control tasks, especially when operations may
be shared between hands. Tilt conditions may be shown
with shading or slight rotation, communicating orientation
through secondary visual properties of the object, instead of
tool marks, menus, or other adornments.

Pressure-Based Control
A number of studies of interaction with pressure-sensing
devices demonstrate that our capacity for absolute estimation
of pressure is quite poor, and is more appropriate as a rate
control. It has been shown [4,9] that users are able to
develop adequate precision with absolute pressure controls
when presented with immediate visual feedback, either
at the point of contact or on the control display. However,
the effectiveness of visual feedback drops in the context of
multi-touch environments, when the user must divide their
attention between several pressure points, in addition to any
other visual task. Gauging relative pressure between two or
more points requires less effort, as long as the sensor is of
adequate resolution, and consistent an continuous pressure
measurement. A simple use of pressure information would
be to estimate a singular depth value for each object. By
representing pressure values as a tilt, we can localize the
depth adjustment to a particular edge or corner, allowing
more precise layer gestures in complex arrangements.

Relative vs. Absolute Layering
If precise placement of an object at a specific depth is not
required, the use of absolute depth values is more a hindrance
than a benefit. As an example, a alternate implementation
allowed the user to slide objects in absolute space along
the tilted plane. By tilting the element and sliding in the
correct direction, objects could be shifted forward and back
along the depth-axis. Casual experimentation revealed this
to be impractical as a layering control, because an accurate
estimate of both position and attitude were required to reach
the target depth. The tilt of a edge or corners conveys the
intended orientation of an element as it is moved relative

to neighboring objects. For sorting operations in which the
relative order elements is more critical than absolute depth,
tilt alone is sufficient as a layering control.

INTERACTION MODEL
The elements of our system are displayed in a two-
dimensional canvas where they can be freely repositioned
using multi-touch RST techniques [3]. Atop this two-
dimensional transformation, objects can be tilted into the
plane by varying the pressure applied. The user can estimate
the relative depth of adjacent elements from rendering cues
and from physical pressure feedback, and thus infer which
element will overlap the other. As elements are moved and
rearranged into overlapping clusters, pairwise overlaps are
used to maintain a consistent global ordering for all elements
in the scene.

Figure 1 shows a side view of six canonical layering
operations that can be performed on a pair of elements using
the tilt layering semantics. For each of these cases, the grey
element, Y, stays in a fixed position while the white element
X is moved so that the two overlap. The top row shows
instances where X is placed atop Y: in 1a the right edge of
X is lifted and pulled on top of Y, in 1b the left edge of X
is depressed to pivot the right edge up and pushed over Y,
and in 1c, one finger lowers the left edge of Y and another
slides X to the side. These may be respectively described as
‘depress and pull,’ ‘wedge and push,’ and ‘raise and slide.’
The second row of example demonstrates a similar gesture
as above, except that the order X is now placed below Y. It
should be noted that only 1c and 1f specifically show more
than a single point of pressure contact.

Tilt calculation is performed in tandem with RST
transformations, so each point constraint may influence one
or both calculations, depending on the pressure applied.
Because the tilt gesture and the orientation control may be
performed from similar hand positions, the user can switch
modes without the cognitive load of changing the pose of
their hand or rearranging of their fingers on the object. This
encourages the natural bimanual manipulation behaviors and
staging patterns that occur in real-world arrangement tasks.

IMPLEMENTATION

Hardware
We use a multi-touch sensor described in [7], which provides
an arbitrary number of position and pressure sensitive contact

a b c

d e f

X Y

Figure 1. Common Layering Gestures

88

points. Our implementation is written in C++ and OpenGL,
and displays various desktop elements, such as standard
polygons, free form shapes, photos, videos, and documents,
running on a 2.4 GHz quad core PC with an nVidia GPU.

Tilt Calculation
We use the isometric tilt-plane formulation from [6], where
pressure values indicate the depth of each contact point, and
a best-fit plane is solved over all points touching an object.
We select a depth mapping function such that light pressure
corresponds to a positions above the surface, so that elements
may be lifted above other objects at rest, while strong pressure
maps deeper into the surface, with a slight deadband ‘in
plane’. As in [6], default constraints are placed to create a
soft ‘pivot ring’ around the center of the object, so that a plane
is well defined even with a single contact point. The ring of
constraints are placed in a ring approximately 90% smaller
than the inscribed circle of the convex hull. Pressure near
the center pushes object the object down uniformly, pressure
away from center tilts in that direction, and ‘leverage’ on the
outer corners can raise the opposite edge of the object, as
shown in Figure 2. This tilt calculation is easily combined
with any position-based RST transformation, making control
of each operation relatively separable.

Pairwise Overlap
The system maintains a directed acyclic graph (DAG) of
overlapping elements, defined by pairwise 2D intersection
tests. Any appropriate intersection routine may be used to
detect overlap, provided that is symmetric and suitable for
real-time performance. Each time intersection condition
changes between objects A and B, the following rules are
applied to determine their overlap order.

Transitive Overlap/Underlap Conditions: If A can be reached
from B via a strict upward or downward traversal of the
graph, then the overlap direction is already well-defined.
This prevents cycles from appearing in the graph.

Tilt Comparison: If either A or B have tilt values, the relative
depths of A and B are compared in their overlapping regions,
using ID-buffer methods or geometric analysis. If A is
consistently above or beneath B in all of these regions, then
we update the edge between A and B. If multiple overlapping
regions do not have a consistent ordering, the default order is
selected. Audiovisual feedback may be provided to indicate
that the ordering may not be what was intended.

Default Order: If neither of the two elements are tilted past
the deadband threshold, or the overlap check does not return
a consistent ordering, then we simply use existing layer
values.

Global Ordering
Using connected component analysis on the overlap graph,
the system groups elements in the scene into ‘clusters’. An
absolute ordering over all elements is valid as long as the
relative ordering is consistent in each of these clusters. We
calculate a total relative ordering in each cluster using depth-
first-search traversal of the pairwise DAG, and re-order
elements accordingly. Valid solutions are not unique, but they
will be visually identical. Methods to better preserve global
ordering constraints between elements will be explored in
future work.

Rendering Cues
A combination of cues are used for indicating the relative
tilt of an object to user. To start with, the slight out-of-plane
rotation is applied correlating to the tilt value calculated by
the system. This alters the visible outline of the object as
pressure is applied. Hardware based depth attenuation (e.g.,
OpenGL fog) can be used to darken portions of the object as
it is pushed into the surface, and if a lighting model is used,
subtle shading effects can indicate direction. If an object is
lifted above the plane, a drop shadow changes in offset and
penumbral width as the object rises. These effects are shown
in Figure 3.

Audio/Haptic Cues
Physical feedback is integral to real-world manipulation tasks.
To add some measure of this to our system, we experimented
with adding simple audio cues for arrangement, by playing
short sound effects when overlap events occurred.

Occluded Content
Element to element layering operations are only useful when
object edges are accessible. However, this is not generally
the case as scenes become denser and more complex.
Occluded elements can be revealed using traditional floating
palette, or through spatially coherent gestures such as the
‘Exposé’ operation, or the ‘tumble’ and ‘splatter’ method
described by [10]. These interface layers distort the context
of the editing operation or occlude other relevant content.
As demonstrated in [2], and extended by [5], page-folding
and peeling provide a simple metaphor for searching through
and revealing occluded content, while keeping with a paper

Figure 2. Single Point Tilt Example, Multi-point Tilt Example, ‘Edge Pivoting’ Example

Figure 3: Tilt Shading, Drop Shadowing

89

metaphor. We implement a variant of this folding behavior
using a pressure clutch for points that are dragged across the
edge of an element. Figure 4 illustrates a short sequence
of actions integrating the folding model with the layering
operations. While peeling back the corner of the yellow
rectangle with one finger, the blue rectangle can be moved
right and inserted between the two elements that are layered
behind it. The blue rectangle is dropped, the fold is released,
and yellow element is restored.

Restoring 2D Orientation
The downside to providing layer control operations with
2D gestures is that it is ill-suited to cases where we wish
to adjust the layer depth alone. In keeping with our goal of
reducing extraneous UI elements to a minimum, we leave a
proxy outline in the original location of the component. If
an object is released in a similar position, it will snap to its
former location.

FUTURE WORK
While the tilt gesture provides a well-defined planar
models, more deformation methods could be applied, such
as non-linear bending, or adding a permanently curled or
folded corners. These would also provide for a variety of
rendering cues to guide user interaction. The initial target
for the layering operation work was restricted to strictly
linear sequencing model. An interesting extension of the
layering model would be to extend this to 2-1/2-dimensional
representations, to allow for complex overlap effects such as
self-overlap, or circular overlap patterns.

In current implementation, the layering model only considers
active overlap relationships among elements in the scene. A
straightforward extension of the overlap algorithm would be
to extend this scheme by inserting prior overlap relationships
as lower priority constraints, or allowing the user to ‘freeze’
layering relationships for groups of elements regardless of
overlap state.

REFERENCES

1. Agarawala, A. and Balakrishnan, R. 2006. Keepin’ it
real: pushing the desktop metaphor with physics, piles
and the pen. In Proceedings of SIGCHI 2006, pages
1283-1292. ACM Press, April 2006.

2 Beaudouin-Lafon, M. 2001. Novel interaction techniques
for overlapping windows. In Proceedings of UIST 2001,
pages 153-154. ACM Press, November 2001.

3 Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and
DeRose, T. D. 1993. Toolglass and magic lenses: the see-
through interface. In Proceeedings of SIGGRAPH 1993,
pages 73-80. ACM Press, 1993.

4 Buxton, W., Hill, R., and Rowley, P. 1985. Issues and
techniques in touch-sensitive tablet input. In Proceedings
of SIGGRAPH 1985, pp. 215-224. ACM Press, July
1985.

5 Dragicevic, P. 2004. Combining crossing-based and
paper-based interaction paradigms for dragging and
dropping between overlapping windows. In Proceedings
of UIST 2004, pp. 193-196. ACM Press, October 2004.

6 Gingold, Y. I., Davidson, P. L., Han, J. Y., and Zorin, D.
2006. A direct texture placement and editing interface.
In Proceedings of UIST 2006, pages 23-32. ACM Press,
October 2006.

7 Han, J. Y. 2005. Low-cost multi-touch sensing through
frustrated total internal reflection. In Proceedings of
UIST 2005, pages 115-118. ACM Press, October 2005.

8 Mander, R., Salomon, G., and Wong, Y. Y. 1992. A
“pile” metaphor for supporting casual organization of
information. In Proceedings of SIGCHI 1992, pages
627-634. ACM Press, May 1992.

9 Ramos, G., Boulos, M., and Balakrishnan, R. 2004.
Pressure widgets. Proceedings of SIGCHI 2004, pages
487-494. ACM Press, April 2004.

10 Ramos, G., et al. 2006. Tumble! Splat! helping users
access and manipulate occluded content in 2D drawings.
In Proceedings of AVI 2006, pages 428-435. ACM Press,
May 2006.

11 Terrenghi, L., Kirk, D., Sellen, A., and Izadi, S. 2007.
Affordances for manipulation of physical versus digital
media on interactive surfaces. In Proceedings of SIGCH1
2007, pages 1157-1166. ACM Press, April 2007.

Figure 4: Use of a peel-back gesture to allow layering with occluded elements

90

