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Abstract

We present a method to enable multi-touch interactions on an
arbitrary flat surface using a pair of cameras mounted above
the surface. Current systems in this domain mostly make use
of special touch-sensitive hardware, require cameras to be
mounted behind the display, or are based on infrared sensors
used in various configurations. The very few that use ordi-
nary cameras mounted overhead for touch detection fail to
do so accurately due to the difficulty in computing the prox-
imity of fingertips to the surface with a precision that would
match the behaviour of a truly touch-sensitive surface. This
paper describes a novel computer vision algorithm that can
robustly identify finger tips and detect touch with a precision
of a few millimetres above the surface. The algorithm relies
on machine learning methods and a geometric finger model
to achieve the required precision, and can be ‘trained’ to
work in different physical settings. We provide a quantitative
evaluation of the method and demonstrate its use for gesture
based interactions with ordinary tablet displays, both in sin-
gle user and remote collaboration scenarios.
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1. Introduction
Developing multi-touch technologies for interaction on
tabletop surfaces is a very active area of research [1], the
goal of which is to enable users to seamlessly interact with
electronic media using finger touches and hand gestures.
Several systems have been developed in this domain (e.g.
[15,5,6,11]) and a large variety of configurations of sens-
ing mechanisms and surfaces have been studied and experi-
mented in this context. The most common of these include
using specially designed surfaces with embedded sensors
(e.g. using capacitive sensing [3,13]), cameras mounted be-
hind a custom surface (e.g. [17]), cameras mounted in front
of the surface (e.g. [9,10,18]) or on the surface peripheri (e.g.
[14]). This paper addresses the case of overhead cameras
mounted on top of a horizontal surface, using ordinary cam-
eras that operate in the visible spectrum of light.

The overhead camera configuration has several advan-
tages as it can be used to convert any arbitrary surface into
an interactive one, thus allowing for smaller form-factor pos-
sibilities, easy installation and customization, and reduced

Figure 1. Our multi-touch sensing mechanism allows for enhanced
gesture based interactions with an ordinary tablet display, simply
by using an overhead stereo camera. The high precision is critical
to giving the feel of a real touch-screen.

costs. The use of ordinary cameras allows for various com-
puter vision techniques to enable recognition of day-to-day
objects or hand gestures [2] as well as to overlay physical ob-
jects from one workspace onto another in the case of remote
collaboration setups, e.g. [8]. This can create a very rich and
multipurpose workspace on the interactive surface.

One of the major shortcomings of current overhead cam-
era based systems, however, is the difficulty in accurately
sensing contact with the surface. This limits the fluidity of
interactions possible, e.g. the Visual Touchpad of [10] that
uses two cameras for depth computation may report a touch
event even if a finger is within approximately 1cm from the
surface; in [9], the single camera system has no way to de-
tect contact of a finger with the surface, so relies on detecting
pauses in finger trajectories to report mouse button events.
The PlayAnywhere system of [18] makes use of an infrared
camera and a simple analysis of the shape of shadow of a
finger to achieve good touch detection. This works well with
projection based displays on opaque surfaces and when a fin-
ger is pointing in a direction almost perpedicular to that of
the infrared light source, but we find that sensing multiple
finger tips on top of an LCD display in the absence of direc-
tional lighting causes shadow based cues to be less reliable
due to occlusions and lighting factors.

The contribution of this paper is a novel computer vision
based algorithm that can robustly detect finger tips and sense
touch for each finger with high precision using an overhead
stereo camera. Unlike previous attempts to solve this prob-
lem [10,19], we present a quantitative analysis of both the
finger detection and touch sensing components of our sys-
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Figure 2. Fingertip detection and multi-touch sensing using stereo
vision. (left) Input image from one camera after homography trans-
formation; (right) Segmentation mask showing orientations of each
hand and detected finger tips (bold circles indicate touch).

tem. We use the algorithm for enabling multi-touch interac-
tions on tablet displays.

2. Physical Setup
Our system consists of a stereo camera mounted above a hor-
izontal surface, viewing the surface at a slightly oblique an-
gle to avoid interference within the working volume. The
sensing algorithm can convert any surface into an interactive
one, though this paper focusses on horizontal tablet displays
to augment stylus input with multi-touch sensitivity. Figure
1 (inset) shows a prototype of the setup.

Calibration. In order to transform the camera view into the
physical coordinates of the working surface, a corner detec-
tion algorithm is used to automatically detect the 4 corners of
the working area in both the camera views. These may be the
corners of the display screen as in our case, or pre-marked
points on any surface. A homographic transformation and
depth plane equation of the surface are then computed and
stored for use during the main algorithm.

3. High Precision Touch Sensing
We develop a machine learning based approach to sense
touching fingers on the surface. Labelled images of several
different finger tips touching and not touching the surface are
used as training data and a mathematical model is developed
that learns to (a) detect multiple finger tips in an image, and
(b) compute for each tip whether it touches the surface.

3.1. Image Segmentation
Before proceeding with fingertip detection, we first segment
the hands from the rest of the image, which is referred to as
the background. Other systems have used image differencing
[9] or infrared filters [18] to suppress the background; recent
computer vision techniques model the appearance statistics
of the background, or use stereo information to identify ob-
jects and hands placed above the surface [2]. In this work,
the background surface is an LCD screen. We exploit the
fact that the light emitted by LCDs is polarized and make
use of appropriately rotated polarizing filters on the stereo

Figure 3. Encoding process that converts each point on the bound-
ary of a hand into a signature vector. These are used to classify
each edge-point as a tip or non-tip point, which are then spatially
clustered to locate individual finger tips.

camera to cancel out the contents of the screen [7]. As a re-
sult, the display screen always appears to be ‘switched off’
to the cameras and the highly complex dynamic background
can be suppressed by simple thresholding (figure 2).

3.2. Fingertip Detection
Fingertip detection in the past has been done using shape fil-
tering on binary images [9], finding strong peaks along hand
blob perimeters [10] or using shadow based methods with
heuristics that return a single fingertip detection per hand
when the finger points in an appropriate direction [18]. In
contrast, we make use of machine learning to develop a clas-
sifier that combines shape and appearance cues to robustly
identify points having high probability of lying on a finger
tip. These are called tip points, and are then clustered to ob-
tain multiple fingertip detections in the image. Fingertips are
thus detected only when there is a substantial evidence in the
form of several tip points.

A few hundred points from the database of training im-
ages are marked as tip points or non-tip points (depending on
whether or not they lie on a finger tip). These are encoded,
using local image patches of 8× 8 pixels, as 64-dimensional
signature vectors. A linear decision rule in the form of a Sup-
port Vector Machine [16] is then learned that allows any new
point to be classified as a tip point based on its signature.
The signature computation process consists of normalizing
each image patch with respect to rotation using the image
gradient at that point, and scaling its intensity values to have
unit variance. The matrix of intensities in this patch is then
raster-scanned into a 64-dimensional vector. The process is
illustrated in figure 3. This encoding allows the detection to
be independent of the rotation of the finger and also quite ro-
bust to lighting variations. Individual finger tips are located
and counted by performing a connected component analysis
based clustering on the detected tip-points.

3.3. Touch and Hover Detection
Distinguishing events of touch from those where a finger is
hovering a few millimeters above the screen requires very
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high precision stereo information. Conventional stereo al-
gorithms that compute disparity images fail to provide this.
In our physical setup, for instance, where the cameras have
a baseline of 12cm and are mounted roughly 50cm above
the tablet surface, depth near the screen is quantized every
5mm, so disparity images provide centimetre level precision
at best. Here we develop an algorithm that probabilistically
aggregates stereo cues from several points at each fingertip
and uses a finger-specific model to achieve millimetre level
precision.

Geometrically, the touching criterion is a function of the
orientation and height of the finger tip above the screen. We
extract this information by computing the equation of a plane
that passes through points detected on the boundary of the
finger – the plane that slices the finger to form its silhou-
ette as shown in figure 4. However, in place of actual height
above the screen, we use disparity values di relative to the
screen surface for each pixel. At each point xi ≡ (xi, yi) on
the boundary of the finger tip (the tip points from above), the
disparity is expressed as

di = α>xi + β (1)

where (α, β) are the parameters of the desired plane. α =
[α1 α2]>. xi are measured in a local coordinate system at-
tached to the finger, for rotation and translation invariance,
and di is measured from stereo matching. With each dispar-
ity measure di, we also associate an uncertainity measure σ2

i

which is obtained by modelling the stereo match likelihood
[4] along each scan line as a normal distribution N (di, σ

2
i ).

This allows for a significant increase in the precision of esti-
mated plane parameters (as compared to using winner-take-
all stereo) since the optimal (α, β) may be estimated via a
weighted least squares regression:

(α∗, β∗) = arg min
(α,β)

∑ 1
σ2

i

[di − (α>xi + β)]2 (2)

In order to detect touch from the α and β values for each
fingertip, we learn a linear decision rule on these parameters
in the form of a discriminative classifier. The condition for
touch thus takes the form

w1α1 + w2α2 + w3β + w4 > 0 (3)

where {w1 . . . w4} are weights that are learned using a sec-
ond Support Vector Machine, taking labeled instances of
touching and non-touching finger tips as training data. The
linear form of a rule for detecting touch is motivated by ge-
ometrically approximating the finger tip as an ellipsoid that
makes a rolling contact with the screen (see figure 4). In this
case, the touching criterion may be expressed as the height
of the centre of ellipsoid being less than a threshold:

[α1 α2]
[

0
r

]
+ β < r′ (4)

which is a special case of the condition in (3) with w1 = 0.
Learning the generic rule (3) directly from data rather than

Figure 4. Geometric model of a finger on the screen-plane. The
orientation and height of a finger is summarized by a plane com-
puted from the detected tip points; and the surface of the finger tip
is well-approximated as an ellipsoid to detect instances of touch.

Tips Non-tips Combined
average accuracy (%) 96.10 92.12 92.48

standard deviation 2.21 1.05 0.98

Figure 5. Classification accuracy of points as tip points or non-tip
points without incorporating spatial information. More tip points
are correctly classified than non-tip points. Although 92.48% rep-
resents a decent performance in itself, most mis-classifications are
corrected during the spatial clustering step that follows (see text).

Disparity Geometric finger
histograms model

average accuracy % 80.50 98.48
standard deviation 6.91 1.38

Figure 6. Classification accuracy of detected tips as touching or not
touching the surface using two different stereo features.

explicity modelling the geometry as in (4) allows for the
model to accomodate deformability of the finger. Futher-
more, it allows us to compute the probability that a fingertip
touches the surface [12], and obtain more reliable informa-
tion by incorporating temporal information.

4. Performance Evaluation
This section presents a quantitative evaluation of the finger-
tip detection and touch sensing accuracy of our system, fol-
lowed by a qualitative description of its use for multi-touch
and gesture-based interactions on tablet displays.

Sensing Accuracy. We conducted experiments with a
database of 500 stereo images of a few different people’s
hands taken with the setup described in section 2. About
3 tip points were marked per visible finger on each image
(each image had between 2 and 5 visible fingers) and 150
non-tip points marked per image. Figure 5 shows the classi-
fication accuracy of points as tip points or non-tip points in
the form of an average over 100 trials with random 90%-
10% splits into training and test data for cross-validation.
The average accuracy of classifying points in this manner
is 92.48%, but our clustering step removes almost all of
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Figure 7. Our high precision algorithm allows seemless multi-touch interactions with an ordinary tablet display. (left) zooming into a map
using a bimanual gesture (centre) using the non-dominant hand to rotate an electronic canvas while drawing with the stylus, and (right) a
remote user zooms into a figure and highlights text in a collaborative work scenario where the workspace is shared multiple tablets. The
stereo camera is used to render a remote user’s hands on the tablet with depth-senstive transparency; we call this phantom presence [8].

the mis-classifications and individual finger tips are detected
with almost 100% accuracy. For learning the touch-detection
classifier, we define a finger tip that is roughly 2mm or more
from the surface as non-touching. Figure 6 shows the ac-
curacy of our touch-detection algorithm. Using the method
described in section 3.3, detected fingertips were correctly
classified as touching or not with an accuracy of 98.48%. As
a benchmark, the table also shows the performance of a clas-
sifier than uses an alternate set of features based on simple
disparity estimates from each fingertip as opposed to the ge-
ometric model of section 3.3.

Interaction on tablet displays. We implemented our algo-
rithm to support bimanual interactions on tablet displays, as
well as complement standard stylus input with gestures from
the non-dominant hand. The sensing algorithm works at up
to 20 fps on a 3.4GHz processor and our applications use
interpolation to allow for seamless interactions. Figure 7
shows some of the interactions we currently support. The
complete system is called the Collaborative Slate (C-Slate)
and is described in [8]. Besides single-user interactions,
it enables enhanced remote collaboration between multiple
users on shared workspaces across more than one tablet; and
supports object sensing and phantom presence [8].

5. Conclusion
This paper has presented a novel algorithm for multi-touch
sensing on surfaces using an overhead stereo camera. We
have combined the use of machine learning with a geomet-
rical intuition of the problem to robustly detect multiple fin-
ger tips in an image and sense touch with a precision of 2-
3mm. This is a significant advancement over existing sys-
tems using stereo vision, which are restricted to centimetre
level precision. The approach is also envisaged to be useful
in other setups, e.g. using infrared images. The performance
of the algorithm falls in adverse lighting conditions and is
also currently susceptible to strong reflections on the screen
surface. Although vision-based systems are often associated
with such drawbacks, resolving these issues will be the focus
of our future work.
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