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ABSTRACT
With the advent of mobile devices with large displays, it is intuitive
and natural for users to interact with an application on a mobile
device using multi-touch gestures. In this paper, we propose that
these multi-touch gestures can be streamed on-the-fly among mul-
tiple participating users, making it possible to engage users in a
collaborative or competitive experience. Such multi-touch streams,
featuring very low streaming bit rates, can be rendered on receivers
to precisely reconstruct the states of an application. We present the
challenges, system framework, embedded algorithm design, and
real-world evaluation of TouchTime, a new system that has been
designed from scratch to facilitate the streaming of multi-touch
gestures among multiple users. By seamlessly combining local
computation on mobile devices and services from the “cloud,” we
explore the design space of suitable mechanisms to represent and
packetize multi-touch gestures, and of practical protocols to trans-
port concurrent live multi-touch streams over the Internet. Specifi-
cally, we propose an auction-based reflector selection algorithm to
achieve the minimal end-to-end delay in a live multi-touch stream-
ing session. To demonstrate TouchTime, we have developed a new
real-world music composition application — calledMusicScore—
using the Apple iPad Programming SDK, and used it as our running
example and experimental testbed to evaluate our design choices
and implementation of TouchTime.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User Interfaces
and Presentation; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed Applications; D.2.13 [Software
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General Terms
Algorithms, Design, Measurement

Keywords
Multi-touch Streaming, Reflector Selection, Mobile Framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MUM’11 December 7–9, 2011, Beijing, China
Copyright 2011 ACM 978-1-4503-1096-3/11/12 ...$10.00.

1. INTRODUCTION
With multi-touch, users interact with computing devices by ap-

plying elaborate finger gestures, directly on display surfaces. Since
the advent of the iPhone in 2007, there has been a steady trend of
adopting multi-touch as the primary human-computer interface in
mobile devices. It is expected that it could one day free us from the
mouse as our primary way of interacting with computing devices,
the way that mice freed us from keyboards [2].
As larger multi-touch surfaces are introduced in recent products,

including the Apple iPad and Microsoft Surface, we believe that
multi-touch, as a more natural and intuitive interface, will soon be
widely used in a new array of applications [18]. Imagine a pro-
fessional photographer editing his photos in the field; a designer
showing her clients an illustration sketch on site; or a child enter-
tained with an interaction intensive game in the family room—all
with only finger gestures. In addition, features of these applica-
tions can be substantially enhanced if more than one user can be
allowed to use them simultaneously. Imagine, again, the level of
satisfaction if a photographer can interact with his team members
live while editing photos; if a designer can show the illustration
sketch to her clients in a remote location; if the entire family can
collaborate or compete in the same game in the family room; or if
people anywhere in the world can watch a live chess game between
two master players in real time.
To realize these scenarios, applications need to share live streams

of screen snapshots or application-specific data to one or multiple
receivers. In a game, for example, this can be readily achieved by
streaming game scenes or data of avatars as they move. However,
there are two major disadvantages in such solutions. First, stream-
ing live videos may not be a scalable solution to a large number
of receivers, as it requires a substantial amount of bandwidth re-
sources. Due to the best-effort nature of the Internet and the higher
bit rate of the video stream, there are no guarantees of the me-
dia quality when the video is received and played back, especially
with a large number of participants. To mitigate such adverse ef-
fects, lower bit rates and receiver-side buffering are usually used for
video, degrading its quality and timeliness. Second, even if more
condensed application-specific data is streamed instead of video,
such a solution requires each application to design a unique custom-
tailored solution for sharing with other users [1], which cannot be
readily used in a different application.
To our knowledge, we are the first to propose that a much simpler

and more elegant solution exists for the entire category of multi-
touch applications, when users use multi-touch finger gestures to
interact with them. To state the solution succinctly, we believe that
it is feasible to stream multi-touch finger gestures directly to multi-
ple receivers, each of which is represented by a live instance of the
same application, but on a different computing device, such as a



different iPad. Rather than playing back a live video stream, multi-
touch gestures can be precisely rendered on a receiver to affect the
states of an application. Rather than being a bandwidth-intensive
streaming solution, multi-touch gestures can be streamed live with
a very low bit rate, and as such can be exceedingly scalable. Rather
than being a custom-tailored application-specific solution, our so-
lution can be implemented as a library or plug-in that works well
with any multi-touch application that needs live sharing features.
In this paper, we start with outlining the fundamental design ob-

jectives and challenges whenmulti-touch gestures are to be streamed
live to multiple receivers. We devote the core of this paper to
address these challenges with the design of a new system from
scratch to stream multi-touch gestures, referred to as TouchTime,
from metadata presentation to practical protocols to deliver them
over the Internet. Once these multi-touch gestures are streamed live
to another user, it will be replayed in the same application, as if an
“invisible” hand is touching her display. As we design TouchTime,
we strive to cover the entire spectrum of questions to make this hap-
pen: how gestures are presented, packetized, and then transported
over a best-effort session to any receiver in the Internet.
A highlight of our design is the integration of local presentation

of multi-touch gestures on mobile devices and optimized transport
services in the “cloud.” Our design philosophy in TouchTime is to
be simple yet elegant. To facilitate the all-to-all broadcast transmis-
sion of multi-touch gestures among all players, we propose to im-
plement an auction-based reflector selection algorithm. By express-
ing users’ and reflector cloud’s preferences using bids and asks in a
continuous double auction market, the auction mechanism that in-
tends to optimize all players’ utilities results in the optimal match-
ing between users and reflectors such that the conflicting objectives
of minimizing delays and balancing server load are resolved.
The remainder of this paper is organized as follows. After pre-

senting our design objectives and challenges in Sec. 2, we describe
the architectural design and system framework of TouchTime in
Sec. 3, from the perspective of mobile devices. In Sec. 4, we shift
our focus to the “cloud,” and explore how multi-touch gestures
can be streamed in a secure and practical fashion, accommodat-
ing fluctuating delays that mobile users tend to experience. Sec. 5
presents our MusicScore application, and evaluates the effective-
ness of TouchTime when it is used for live multi-touch streaming
in MusicScore. We conclude the paper with a discussion of related
work and final remarks in Sec. 6 and Sec. 7, respectively.

2. MOTIVATION AND CHALLENGES
Our ultimate design objective is to design the best possible sys-

tem, called TouchTime, from the ground up to stream multi-touch
gestures to multiple participating users. The TouchTime system
uses a shared set of components to support a wide variety of touch-
intensive applications.
Throughout this paper, as a running example of such an applica-

tion and an experimental testbed for TouchTime, we have designed
and implemented MusicScore, an application for music composi-
tion using multi-touch gestures, from scratch using the iPad SDK.
MusicScore allows a user to create musical notes by taps with fin-
gers, to change the pitch of notes in a chord by dragging them ver-
tically with two or more fingers, to choose a group of musical sym-
bols by creating a selection box with two fingers, and to remove
selected notes by crossing them out. Fig. 1 visually illustrates a
conceptual example: when the touching finger moves up, the pitch
of the selected half note changes from D to G.

2.1 Streaming Multi-touch Gestures
There are many benefits we can obtain by streaming multi-touch
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Figure 1: Music composition with multi-touch gestures in Mu-
sicScore, a music composition application we developed on the
iPad.

gestures directly rather than live screencast or application-specific
data. Compared with the traditional live video streaming, transmit-
ting gestures incurs much fewer streaming bit rates, which allevi-
ates the bandwidth requirement substantially. With an intelligent
design, streaming multi-touch gestures rather than video is more
likely to satisfy stringent delay requirements. More importantly,
multiple users are now possible to interact with the same set of ap-
plication states at the same time. In MusicScore, this implies that
one user in New York is able to compose the theme of a piece of
music, while another user in Tokyo is working on the chords of
the same piece at the same time. Note that as voices in a score are
edited by each individual collaborator, the editing conflict problem,
which many online collaborative editing systems face [9], is natu-
rally solved.
Since the goal of TouchTime is to share collaborative or com-

petitive multi-touch interactions among mobile users in the same
session, TouchTime should be able to stream multi-touch gestures
generated from each participant, replay streamed gestures at remote
mobile applications, and change application states accordingly in
remote devices. In Fig. 2, we show a conceptual illustration of
multi-touch streaming in TouchTime. User A’s multi-touch ges-
tures (using two-finger to create a selection box in this example)
are represented by a multi-touch stream, and transmitted to User B
for replay. As if an “invisible” hand is touching B’s display, the
application states of B is changed correspondingly.
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Figure 2: A conceptual illustration of multi-touch streaming in
TouchTime.

2.2 Characteristics of Multi-touch Streaming
There are a number of challenges when designing the TouchTime

system, as its design is custom-tailored to fit the needs of stream-
ing multi-touch gestures, a non-conventional kind of data with its
unique characteristics.
First, multi-touch gesture streams have a very low, yet bursty,

bit rate. In multi-touch applications, it is usually the case that users



interact with their devices frequently for a while and then stay idle
most of the time. Second,multi-touch gestures need to be streamed
in an in-order and lossless fashion. Reliability is of utmost impor-
tance when streaming gestures: any lost or erroneously transmit-
ted gesture shall lead to a complete failure, as these gestures are
used to precisely render and reconstruct application states at the re-
ceiver. Third, multi-touch streaming prefers the shortest possible
end-to-end delay. Most collaborative multi-touch applications are
time sensitive, and as such demand a short delay when multi-touch
gestures are to be streamed. Finally and most importantly, once the
playback of streamed gestures starts at a receiver, no matter how
long the initial startup delay is, the interval between the playback
time of two gestures at the receiver has to be kept precisely identi-
cal to the difference between their original timestamps when they
are generated at the sender. Otherwise, rendered states of an appli-
cation may be different from the original. This implies that each
gesture has to arrive at the receiver on time, before its scheduled
rendering time. A longer initial startup delay may be used to mask
higher delay jitters, so that most streamed gestures can be rendered
on time. Illustrated in Fig. 3, Bob’s replay of Alice’s gestures can
be later than the original ones by an initial startup delay δ, but the
intervals between gestures∆t1,∆t2... have to be kept precisely the
same during playback.

TimeAlice's gestures

Bob's replay

...

...t

t + δ

∆t2∆t1

Time
...

...∆t2∆t1

Figure 3: Streaming multi-touch gestures with an initial
startup delay of δ.

With these unique characteristics, the design of the TouchTime
is more challenging than conventional media streaming systems. It
needs to be designed so that a bursty and low bit-rate stream from
each user can be transmitted in a reliable and timely fashion.

3. TOUCHTIME: WHEN MULTI-TOUCH
MEETS STREAMING

We are now ready to present a detailed design of the TouchTime
system.

3.1 TouchTime: An Overview
We have implemented the TouchTime system on the iOS plat-

form, using Objective-C, with support for iOS multi-touch devices
such as the iPad. TouchTime is designed to provide a complete sys-
tem framework to support multi-touch gesture streaming in touch-
intensive applications, such as MusicScore, without requiring ap-
plication specific development efforts.
Fig. 4 demonstrates the architecture of TouchTime. It consists

of three components: a presentation module, which observes all
multi-touch events generated by users and packetizes these events
into multi-touch objects for transmission; a transportmodule, which
efficiently streams multi-touch objects to one or more devices; and
a replay engine that renders remote multi-touch objects in the local
application context.

3.2 Presenting Multi-touch Gestures
The first natural question is how multi-touch gestures should be

presented and packetized in preparation for streaming to multiple
participating users.
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Figure 4: Architecture of software components in TouchTime.

In multi-touch applications, gesture recognizers are developed to
analyze a raw stream of touch objects in a multi-touch sequence,
and to determine the intention of users based on properties of each
gesture. For example, the new gesture recognizer in the recently re-
leased iPad Programming SDK facilitates the recognition of basic
gestures, such as tap, pinch, and swipe, which are used in Music-
Score to interact with music elements. Fig. 5 demonstrates a few
lines of code to use a gesture recognizer in the iOS SDK to detect an
upward swipe gesture with two fingers. It analyzes the number of
touches and the direction of touch movement from the raw stream,
and compares them with requirements stored in the recognizer to
make a decision.

// Create & initialize a swipe gesture recognizer
UISwipeGestureRecognizer *upSwipe =

[[UISwipeGestureRecognizer alloc]
initWithTarget:self
action:@selector(handleUpwardSwipe:)];

upSwipe.numberOfTouchesRequired = 3;
upSwipe.direction = UISwipeGestureRecognizerDirectionUp;
// Associate the recognizer with a view
[aView addGestureRecognizer:upSwipe];

Figure 5: An example of using the three-finger upwards swipe
gesture recognizer in iOS SDK.

What information should be streamed for a precise playback at
a receiver? We have two feasible alternatives, as shown in Fig. 6
and Fig. 7. First, the raw stream of touch objects, represented by a
successive sequence of touch locations, can be streamed to the re-
ceiver, which uses local recognizers to distill multi-touch gestures.
This alternative is suitable for applications that engage touch input
without the need for recognizing complex gestures, such as artis-
tic drawing. Second, multi-touch gestures can be first recognized
and then streamed to the receiver to be replayed so that application
states are rendered. In this case, the sender needs to transmit not
only the type of the gesture, but also additionalmetadata of the ges-
ture so that it can be replayed precisely. Such metadata is specific
to a gesture, but at least includes the location of the gesture in the
current view.
In addition to multi-touch gestures, the accelerometer sensor, de-

signed for motion input, is often used for user interface control, es-
pecially in action-intensive games. To render application states at
the receiver, it is necessary to stream raw three-dimensional (x, y, z)
values and their timestamps, stored in UIAcceleration ob-
jects in the iPad SDK. The time interval of streaming these three-
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dimensional values should be the same as the update interval spec-
ified in the UIAccelerometer class in the SDK, and is specific
to an application. Being periodic, these values can also used as
soft states that maintain the liveness of the stream and keep the
connection refreshed: it is easy to detect the difference between a
terminated stream and an idle stream in TouchTime, by checking if
periodic accelerometer values are still being received at a receiver.
To packetize and transmit a raw stream of touch objects (Fig. 6),

we propose to use a simple binary format, due to the fact that there
are only four types of events involved (touch-begin, touch-move,
touch-end and touch-cancel). With a raw stream, touch objects are
continuously generated as a user interacts with her device, and as
such they require a more compact form of presentation in prepara-
tion for transmission with a low bit rate. Though the binary form
of presentation is terse, it is not easily extensible to accommodate a
wide variety of new multi-touch gestures. For this reason, if multi-
touch gestures are to be streamed instead (Fig. 7), we propose to
use XML in TouchTime. XML is designed to represent complex
and structured data, and frees us from worrying about the basic
syntax of how to represent multi-touch gestures to be streamed. It
can be used to describe new multi-touch gestures, without the need
to write custom-designed parsers. As gestures are entered by a user
at a very low rate, the bit rate of the stream remains low and is not
a main concern when XML is used.
There are a number of possible events to be streamed: touch

objects in a raw stream, multi-touch gestures, as well as periodi-
cally updated accelerometer values. Regardless of the alternative of
multi-touch streaming used (raw stream or gestures), each of these
events should always be accompanied by its sequence number and
timestamp. At a receiver, sequence numbers are used to detect out-
of-order delivery and losses of the event stream, and timestamps
help to replay them with precise time intervals as they are originally
generated: any time interval∆ti can be computed as the difference
between the timestamp of the ith event and that of the (i−1)th . An
example of presenting a typical multi-touch gesture using XML is
shown in Fig. 8.

3.3 ReplayingMulti-touchObjects at Receivers
Once packetized multi-touch objects are received, they are lo-

cally rendered by the playback module in TouchTime. Multi-touch
objects are first encapsulated in UITouch instances, used inter-
nally to represent touch gestures in the iOS. With respect to ac-
celerometer information, UIAccelerometer instances are re-
stored using received data in the stream. As UITouch or UIAcce-
lerometer instances have locally been created, TouchTime em-
beds them into UIEvent objects and push these events into the
event dispatching queue. The iOS will then automatically propa-
gate events through the responder chain and trigger corresponding
methods to handle these events, as if they have been entered locally.

<?xml version = "1.0"?> 
    <gesture>
        <timestamp> 
            2011-05-19T14:34:53.21 UTC 
        <\timestamp>
        <sequence-number> 246 <\sequence-number>
        <type> tapping <\type>
        <metadata>
            <location> (345, 253) <\location>
            <number-of-tap> 1 <\number-of-tap> 
            <number-of-finger> 2 <\number-of-finger>
        <\metadata>
    <\gesture>

Figure 8: Presenting a two-finger single-tap gesture with XML.

4. TOUCHTIME: STREAMING
MULTI-TOUCH IN THE CLOUD

In this section, we present the design of TouchTime in the cloud,
and show how a number of TouchTime system components collab-
orate to provide cloud services for multi-touch streaming.

4.1 The Need for the Cloud
After users established a live multi-party interaction session, it is

up to TouchTime to relay data traffic in such a session. Intuitively,
forming a complete mesh topology among users in the session may
be a solution. However, it is not scalable, bandwidth-efficient,
or energy-efficient. As an alternative solution, bandwidth usage
within a complete mesh can be reduced by nominating a device as
a session “host,” relaying streams for others. However, power con-
sumption on such a host with inevitably increase, which may not
be fair to the host.
Furthermore, most multi-touch devices in reality are mobile de-

vices equipped with EDGE, 3G and/or Wi-Fi modules. In these
cellular and wireless networks, network address translation (NAT)
is extensively used to bridge private local networks with the pub-
lic Internet. As NAT breaks end-to-end connectivity, it is difficult
to establish a direct connection between two multi-touch devices,
even with modern NAT traversal technologies. To overcome this
critical problem, we design and implement the TouchTime reflec-
tor in the cloud to relay multi-touch streams. If two nodes in a
session fail to initiate a direct connection between each other, they
can take advantage of the TouchTime cloud service for multi-touch
streaming, and actively connect to a common set of nearby reflec-
tors. Then, multi-touch gestures from the sending node can flow
through encrypted tunnels created by TouchTime reflectors, and
reach the receiving node in the session. A high-level overview of
the TouchTime cloud is illustrated in Fig. 9.
To build a secure cloud service for TouchTime, we propose to

build a TouchTime controller — a set of dedicated authentication
and authorization servers — to manage user nodes and services
in the cloud. Each time a node is logged in and a collaboration
session is initiated, the TouchTime controller verifies the user’s cre-
dentials, such as an email and password pair, and grant the node ac-
cess privileges to transmit its multi-touch stream over reflectors in
the cloud. Communications between the TouchTime controller and
users are secured by the HTTPS protocol. The use of the HTTPS
protocol also maximizes compatibility with restricted network con-
nections (e.g., firewalls, proxies, and NAT gateways). Additionally,
the TouchTime controller issues a digital certificate for each active
TouchTime session, which will be verified by TouchTime reflectors
as the forwarding connection is being established. Since malicious
nodes cannot join a session in reflectors without a valid certificate,
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Figure 9: Cloud services in the TouchTime system. End-to-end
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wiretapping and destructive manipulation are effectively prevented
in the cloud.
In order to implement relay tunnels that are to be established be-

tween TouchTime reflectors and end users, we choose to use the
TLS protocol over TCP connections. The benefits of TLS over
TCP are two-fold: (1) TCP naturally provides an in-order, lossless
and error-free transport service required by multi-touch streaming;
(2) TLS gives an off-the-shelf security solution to ensure the se-
crecy and integrity of streamed data. Once participating nodes
in a session have securely connected to a common set of reflec-
tors, these nodes can freely transmit multi-touch streams over the
TouchTime cloud. Taking full advantage of event-driven sockets
brought by NSStream and the Run Loop infrastructure in the Co-
coa framework, our implementation of TouchTime reflectors is able
to maximize CPU utilization in each server, and as a result achieve
maximum throughput with respect to the relay service provided to
multi-touch streams.

4.2 The Problem of Reflector Selection
TouchTime allows applications to implement custom-tailored re-

flector selection algorithms, by invoking methods in application-
provided delegate instances. An application with delay-sensitive
sessions may wish to favour reflectors with low latencies, while
data-intensive interactive sessions may prefer reflectors with higher
throughput and lighter workload. That said, we wish to ship TouchTime
with a number of reflector selection algorithms that are designed to
minimize end-to-end delays, which is one of the most important
concerns in multi-touch streaming.
Since different users experience different end-to-end delays when

using the same reflector, their intrinsic value of using this reflector
is naturally different. As end-to-end delays fluctuate over time, it
is reasonable to allow users to choose multiple reflectors. Reflec-
tors, provided by dedicated servers in the cloud, also have the ca-
pacity to assist multiple users. The relationship between reflectors
and users can then be modeled with a bipartite graph illustrated
in Fig. 10. If a reflector (on the left) is selected to provide relay
services to a user (on the right), they are linked with a darkened
edge. The preferred-reflector graph, marked with darkened edges,
is therefore a subgraph of the bipartite graph. The problem of re-
flector selection is essentially a matching problem that produces
such a preferred-reflector graph, in which each user is matched to
one or more reflectors, and each reflector is matched to a number
of users, without exceeding its relay capacity.

Re!ector 1

Re!ector 2

Re!ector 3

User 1

User 2

Figure 10: The problem of reflector selection can be modeled
as a matching problem in a bipartite graph.

Greedy reflector selection. Provided that TLS connections to
nearby reflectors have been established, TouchTime should intelli-
gently decide how to transmit multi-touch streams over these re-
flectors. In order to minimize end-to-end delays — the most criti-
cal design objective of TouchTime— an intuitive way is that each
user greedily selects the reflector that provides a relay path with the
shortest end-to-end delay. To mitigate delay variations over time,
the greedy algorithm can becomemore dynamic: although only one
relay path is chosen to be active, nodes keep other idle paths alive,
i.e., idle tunnels are not disconnected, and delay measurements are
periodically probed over these idle paths. Once a user finds a “bet-
ter” reflector that forms a relay path with a shorter delay, it will
immediately switch to that reflector.
With the greedy algorithm, however, the load of reflectors may

fluctuate over time. Since users are allowed to dynamically switch
to “better” reflectors, the load may be shifted back and forth be-
tween two nearby reflectors over time. Since a user chooses a
reflector with the shortest delay in a greedy fashion, the reflector
with the shortest delay will be chosen by a large number of users at
a given time with high probability. Such a “flash crowd” of relay
requests leads to a substantial increase in the load on the reflector,
and a longer processing time due to the high load results in longer
relay latencies. As a consequence, users tend to switch to a nearby
reflector with a smaller delay, shifting the load to that reflector.

4.3 Auction-Based Reflector Selection
Taking the phenomenon of load shifting into account, it is neces-

sary to design and implement a more elaborate algorithm to select
reflectors in the TouchTime cloud in order to achieve better perfor-
mance with respect to delays. Such a new algorithm should re-
solve the conflicting interests between users, who prefer the short-
est delays when selecting a reflector, and the TouchTime cloud, who
prefers a more balanced load across reflectors. From the perspec-
tive of the entire TouchTime system, a “pivot point” needs to be
chosen to achieve a balanced tradeoff.
Since the delay variation of a single relay path trends to be rel-

atively large, to meet stringent delay requirements, in addition to
periodically probe for a reflector with shorter delays, we may send
a few replicas of the same packet through two or more reflectors,
simultaneously. In this case, the delay of one packet is determined
by the shortest delay among all relay paths: it is likely that delays
and delay variations are reduced with the use of multiple reflectors.
That said, the use of multiple copies of the same packet leads

to redundancy, which should not be excessive. Multi-touch gesture
streams in TouchTime have a very low, yet bursty, bit rate. Our pre-
liminary measurements reveal that most of time (over 60%) the bit
rate is lower than 5 kbps, and occasionally the rate is over 10 kbps.
Considering these observations, a few replicas of the same packet
are considered acceptable when the bit rate is lower than 10 kbps.
The challenge, of course, is how a small number of reflectors can
be selected to serve each user.



Due to the delicate relation between delays and the reflector load,
it now becomes necessary to design and implement a more elabo-
rate algorithm to match reflectors in the reflector cloud to users
in order to achieve better performance with respect to delays. To
avoid load shifting when the greedy selection algorithm is used, it
will be beneficial if reflectors can give some “feedback” on their
load to the users; and more importantly, such “feedback” should be
given in a proactive fashion, such that users can be “warned” by
potentially longer processing times before they actually connect to
that reflector.
It has been well known that double auctions, such as the Preston-

McAfee double auction [16], the threshold price double auction [14],
and the continuous double auction [10], are widely applied in the
research of networking, such as resource allocation in grid com-
puting [3], spectrum trading in cognitive radio [21] and so on. It
solves the matching problem of a set of commodities between mul-
tiple buyers and sellers, such that the system welfare gained by all
players is maximized over a given player-commodity payoff func-
tion.
The problem of matching users to reflectors can be related to

such a double auction market, in which all participating users be-
have as buyers, all reflectors behave as sellers, and relay services
are treated as commodities. If we define the payoff function of a
user connected to a reflector to be a non-increasing function of the
delay of using its relay service (i.e., the smaller the delay is, the
greater the payoff will be), the matching results arbitrated by the
continuous double auction market naturally produce the optimal
selection outcome that minimizes end-to-end delays.
The system welfare problem. We consider a system of R re-

flectors in the cloud and U participating users, represented by sets
R and U , respectively. At any given point in time, we define
"Iu = (I1u, I

2
u, ..., I

R
u ) to be the configuration for a user u. Iru is

a binary variable that indicates whether a reflector r helps relay
packets from user u, and has the following form:

Iru =

{

1 r is assigned to relay packets from u;
0 otherwise.

Any reflector r ∈ R has a maximum relay capacity Cr , in terms
of the number of users it is able to serve. Valid configurations are
then constrained by the following inequality:

∑

u∈U

Iru ≤ Cr , ∀r ∈ R.

We assume that at each user u there is an underlying utility func-
tion Fu("Iu), which reflects how user u is satisfied with configu-
ration "Iu. The system welfare problem — with the objective of
optimizing the aggregate utility of users subject to relay capacity
constraints of reflectors — can be formulated as follows:

max
!Iu

∑

u∈U

Fu("Iu) (1)

s.t.
∑

u∈U

Iru ≤ Cr , ∀r ∈ R. (2)

The system welfare problem aims to find the optimal configura-
tion "Iu for all users so that the sum of their utilities is maximized.
The approach of defining the system welfare as the sum of indi-
vidual utilities is widely applied in resource allocation problems in
networking [11, 12]. Since our objective is to minimize the delay
experienced by every user, it is reasonable to assume that the util-
ity is higher when a configuration assigns reflectors with smaller
delays. We proceed to show that, by defining the utility function
appropriately, the system welfare problem is equivalent to the so-

cial utility maximization problem in a continuous double auction
market.
The reflector selection market. Our motivation of using double

auction markets to solve the reflector selection problem is inspired
by the power of markets arbitrating optimal decision of both buy-
ers and sellers in a balanced fashion. Auctions have the ability
to determine the optimal buyer-seller matching when considering
all participants’ utilities. As a consequence, the resulted match of
users and reflectors takes into account users’ preference of shortest
delays and TouchTime cloud’s preference of a more balanced load
across reflectors at the same time.
Though there are numbers of auction mechanisms, the continu-

ous double auction has a number of unique properties that is amenable
to a practical and decentralized implementation in cloud systems.
First, the auctioneer’s role is much less emphasized and, apart from
certain monitoring tasks such as assuring that offered prices are
taken without further bargaining between traders, it can be reduced
to collecting the bids and informing traders [8]. Second, the conti-
nuity in the market caters to asynchronously arrived bids and asks.
Users are, of course, inherently asynchronous in the TouchTime
cloud service. In a continuous double auction market, buyers and
sellers submit their bids and asks, respectively, at any time during
the trading period, and the market clears continuously. Specifically,
a trade is executed immediately when a bid exceeds an ask.
Without loss of generality, we focus on one double auction at an

arbitrary trading time. The bid (ask) price bru(au
r ) is the reported

price that buyer u (seller r) is willing to trade with seller r (buyer
u). The clearing price pru is the transaction price at which the win-
ning buyer u and seller r trade. A buyer who buys her commodity
valued at b and pays p to receive it will obtain a utility gain of b−p;
a buyer who pays nothing and not receiving the commodity obtains
zero utility. Similarly, a seller who sells her commodity valued at
a and receives a payment of p obtains a utility of p− a; otherwise
obtains zero if no trade arises. If all participants bid truthfully, the
double auction protocol in a market withM buyers and N sellers
solves the following social utility maximization problem [4]:

max
M
∑

u=1

N
∑

r=1

Iru(b
r
u − pru) +

N
∑

r=1

M
∑

u=1

Iru(p
r
u − au

r ) (3)

s.t.
M
∑

u=1

Iru ≤ Cr , ∀r (4)

Iru ∈ {0, 1},

where Iru denotes whether a trade is conducted between buyer u and
seller r or not, and constraint (4) refers to the reality that the number
of trades conducted by each seller r is restricted by its commodity
capacity Cr .
By comparing the system welfare problem (1) with the social

utility maximization problem (3), it is not difficult to find out that
the two problems are equivalent to each other if we define the utility
function to be of the following form:

Fu( "Iu) =
∑

r∈R

Iru(b
r
u − pru) +

∑

r∈R

Iru(p
r
u − au

r )

=
∑

r∈R

Iru(b
r
u − au

r ).

If bids bru and asks au
r are properly defined so that the utility func-

tion Fu("Iu) is able to specify the satisfaction of user u under the
configuration "Iu, the double auction can be applied to solve the
system welfare problem in TouchTime.
Reflector selection in a double auction market. We now envi-



sion the existence of an online double auction market, where all
participating users behave as buyers and reflectors behave as sell-
ers; services of relaying packets in TouchTime are treated as com-
modities. In a continuous double auction, users are matched to
reflectors such that the combined satisfaction level of all users is
maximized.
Every user u bids bru for the relay service of each reflector r ac-

cording to the end-to-end delay measured by the user herself, and
adjusts her bid accordingly as delays vary over time. Every reflec-
tor r, in turn, asks ar from all users depending on its CPU utiliza-
tion, since a saturated utilization of the CPU reflects that the relay
capacity has been reached. As a consequence, mappings between
buyers and sellers are dynamically controlled by both users and re-
flectors. Note that the ask of one reflector to every user is the same,
i.e., au

r = ar , ∀u ∈ U , since reflectors do not treat any of the users
with higher priorities.
Let tru be the end-to-end delay when packets are relayed via a

reflector r, measured by user u. To express her preference, each
user u in the market bids bru for the relay service of each reflector
r according to the end-to-end delay tru measured by the user her-
self, and adjust her bid accordingly as delays vary over time. We
define the bid from user u to reflector r as bru = exp

(

−α(tru)
β
)

,
where α and β are variables that can be tuned according to delay
observations. Fig. 11 shows an example when the tolerable delay
is smaller than 100 msec. As shown, the idea is when delays are
smaller than 100 msec, the function generates bids that are high
in general, since any reflector that can provide tolerable delays are
preferred. On the other hand, if the measured delay is larger than
100 msec, the generated bid decreases dramatically until it reaches
some maximum delay it can sustain, e.g. 300msec in this example,
when the bid goes to zero afterwards. This implies that the user is
no longer willing to bid for reflectors with longer delays.

Figure 11: An example of the
bid function with α = 10−7

and β = 3.

Figure 12: An example of the
ask function with p = 6×10−4

and q = 2.2.

Let lr and l̂r be the average processing time and the threshold
of average processing time at reflector r, respectively. The CPU
utilization ratio of the reflector r can be expressed as wr = lr/l̂r ×
100. Similar to the bid, we define the ask from reflector r to be
ar = exp (−p(100− wr)

q). Fig. 12 shows an example with p =
10−7 and q = 3. The intuition is that reflectors tend to decline
additional connections when their load goes higher, e.g., 60% in
this example, by raising their asks accordingly. Note that the ask
of one reflector to every user is the same, since reflectors treat all
users with equal preferences. To make bids and asks comparable,
we choose the exponential functions to compute bids and asks, so
that the produced values are in the range of [0, 1].
In continuous double auctions, the payoff of a trading pair with

bid bru and ask ar is bru−ar . As we can see: the shorter the end-to-
end delay tru is, the larger the payoff will be; the lower the load lr
is, the larger the payoff will be, which implies a higher utility Fu.

This conforms with the intuition that the shorter the delay, the more
satisfied a user is. In addition, our definition of bids and asks also
implies that a user would be more satisfied when it chooses more
than one reflector.
Till this point, we have shown that our definition of bids bru and

asks ar allows the utility function to specify the satisfaction of each
user, which implies that the system welfare problem in TouchTime
is equivalent to the social utility maximization problem in our dou-
ble auction market. Initially, a user are grant access privileges by
the TouchTime controller to establish TLS tunnels to all reflectors,
and randomly chooses k (k equals to 2 in our implementation) re-
flectors that have the shortest delays. A user starts a continuous
double auction (CDA) market periodically (the period T = 3 min
in our implementation) by contacting reflectors directly. All re-
flectors then send their asks to this user, and the market is cleared
gradually by the user’s decision after comparing each ask to its bid,
based solely on local information.
The auction-based reflector selection algorithm is described in

Algorithm 1.

Algorithm 1 Auction-Based Reflector Selection.
1: A user u contacts reflectors to start a CDA market after every
period of T .

2: Every reflector r computes its ask ar =
exp (−p(100− wr)

q), and sends it to user u after a
TLS tunnel is established.

3: User u computes its bid bru to reflector r: bru =

exp
(

−α(tru)
β
)

.
4: When user u receives an ask ar from a reflector r, it executes
the following:

5: if ar ≤ bru then
6: User u notifies reflector r that they can trade at the trading

price pru = 1

2
(bru + ar), i.e., reflector r will serve to relay

packets from user u.
7: else
8: No trade occurs.
9: end if
10: The market is cleared gradually by receiving asks ar , and is

closed when all asks have been received by user u.

Economic properties of double auctions. Truthfulness, individ-
ual rationality and budget balance are critical properties required to
design economically robust double auctions [13]. We now discuss
these properties in our double auction markets in TouchTime.

% Truthfulness: A double auction is defined to be truthful if no
buyer or seller can obtain a higher utility gain by cheating, i.e.,
setting bid or ask not equal to its true utility value. Trustfulness is
essential to resist market manipulation and ensure auction fairness
and efficiency [20]. It also eliminates the overhead of strategizing
over other players.
Generally, double auctions are difficult to analyze game-theoretically.

However, the trading mechanism here bears some similarity with
the 0.5-double auction under the assumptions that the number of
buyers and sellers are large [8]. It has been proved that the 0.5-
double auction is not incentive compatible, neither for buyers nor
for sellers. Therefore, truthful bidding is not an equilibrium in this
case. But when the number of buyers and sellers, m and n re-
spectively, grow at the same rate (the ratio of m/n being bounded
both from above and away from 0), then all equilibria are within
O(1/m) of the truthful bidding and expected inefficiency of any
equilibrium isO(1/m2). Whenm is large, which is the norm in re-
flector selection markets, the proposed double auction mechanism



satisfies the truthfulness requirement.
% Ex-post Individual Rationality: A double auction is ex-post

individually rational if the expected utility gain of any truthful par-
ticipant in the auction is non-negative for all possible outcomes.
Ex-post individual rationality ensures a non-negative utility gain if
participant reports its true utility value, therefore provides incen-
tives in the auction.
In our double auction markets, the clearing price of buyer u and

seller r is defined to be pru = 1

2
(bru + ar), where both bid and ask

are non-negative by definition. So when the trade is made, i.e., we
have bru > ar , bru − pru = pru − ar = 1

2
(bru − ar) > 0. This

implies that for any winning buyer u and seller r, their utility gains
are non-negative, which proves our double auction markets are ex-
post individually rational.
% Ex-post Budget Balance: A double auction is ex-post budget

balanced if the mechanism’s payoff is non-negative for all possible
outcomes, which ensures that the auction will never run into deficit.
Since the number of winning buyers and sellers are guaranteed to
match, and in each of the trading pairs, the payoff of a buyer is
always the same as the revenue of a seller. That is, the auctioneer’s
payoff is always zero. By the definition of budget balance, our
double auction markets are ex-post budget balanced.

5. TOUCHTIME: PERFORMANCE EVAL-
UATION

We believe that the best way to evaluate TouchTime is to im-
plement it, with a real-world multi-touch application that takes ad-
vantage of TouchTime to enable multi-touch gesture streaming. To-
wards this objective, we have implementedMusicScore, a professional-
grade multi-touch application for music composition (shown in Fig. 13),
entirely from scratch and using only multi-touch gestures. We de-
velopedMusicScore using the recently released iPad Programming
SDK from Apple Inc., with more than 58, 000 lines of code (LOC)
in Objective-C. We designedMusicScore to make it natural and in-
tuitive to compose music, for serious composers and amateur hob-
byists alike. MusicScore takes full advantage of our implementa-
tion of the TouchTime system to allow composers to enjoy a live
collaborative session, and students to benefit from a live educa-
tional experience, all without any knowledge of the architectural
design choices in TouchTime.

Figure 13: MusicScore in action: two users are collaboratively
composing a musical piece.

In addition, we have implemented the entire TouchTime system
from scratch, frommobile devices to our cloud service, using Objective-
C based on the Cocoa framework, with over 4, 000 LOC in total.
MusicScore produces actual multi-touch gesture streams, which are

used to evaluate the performance of TouchTime. In order to col-
lect run-time traces, a compact logging module has been imple-
mented to anonymously record performance metrics as multi-touch
gestures are streamed. We dedicate this section to analyze traces
we collected from MusicScore and to evaluate the performance of
TouchTime, with a focus on the reflector selection algorithm based
on double auctions.

Problems with Greedy Reflector Selection
We start our studies with the intuitive greedy selection algorithm.

In Fig. 14, our measurement shows that the average end-to-end de-
lay is acceptable in general (e.g., 140.2 msec for Wi-Fi users con-
nected to different access points at various ISPs); however, we ob-
serve significant variations of delays over time in our trace. To
quantify such delay variations, we plot the CDF of standard de-
viation of end-to-end delays in different Internet access types in
Fig. 15. As shown, in both faster Wi-Fi networks and slower cellu-
lar networks, half of the end users experienced more than 98 mil-
liseconds of delay variations. This can be attributed to the lack of
stability in real-world wireless networks and last-mile ISPs, mostly
due to cross traffic.

Figure 14: CDF of end-to-end
delay between Wi-Fi/3G users
with the greedy algorithm.

Figure 15: CDF of standard
deviation of end-to-end de-
lays in different Internet ac-
cess types.

When we measure the server load — defined as the number of
active connections relayed — at our reflectors in Fig. 16, results
confirm the existence of the reflector fluctuation problem discussed
in Sec. 4.2: the server load may be shifted back and forth between
two nearby reflectors over time, as nodes are allowed to greedily
and dynamically switch among reflectors.

Figure 16: Variations of
server load in two nearby re-
flectors with the greedy algo-
rithm.

Figure 17: Correlation be-
tween the load of a reflector
and end-to-end delays.

To gain a better understanding of the greedy algorithm, we ex-
amine the correlation between the server load of a reflector and
the end-to-end delay. In Fig. 17, we plot the box-and-whisker dia-
gram to study five statistical characteristics: the smallest observa-
tion (within 1.5 IQR), lower quartile, median, upper quartile, and



Table 1: Percentage of overhead in TouchTimewith the auction-
based reflector selection algorithm.

Overhead (%) Delay Probing Load Notification
Mean 1.613 0.277
95% CI 0.095 0.049

the largest observation. As we can see, when the server load in-
creases, the median of delay increases slightly, and the upper quar-
tile as well as the maximum delay increase significantly. This im-
plies that relay paths over a heavily-loaded reflector may experi-
ence higher end-to-end delays. These results have further con-
firmed our explanations to the observed problem when the dynamic
greedy algorithm is applied.

Evaluations of Auction-Based Reflector Selection
Since we have proposed the auction based mechanism to address

the observed load fluctuation problem in the greedy algorithm, a
reality check is conducted in our experiments to verify its effective-
ness. To quantitatively measure the load variations, we define the
normalized load difference between two reflectors as the maximum
difference of loads during a 5-min period divided by the average of
server loads in that period of time. As shown in Fig. 18, we plot
the CDF of the normalized load difference between two “nearby”
reflectors located in the same ISP. Thanks to the auction-based re-
flector selection algorithm, the mean of normalized load difference
is reduced from 4.2% to 1.1%.

Figure 18: CDF of normalized
load difference (%) between
two nearby reflectors.

Figure 19: CDF of std. dev. of
delay in Wi-Fi end users with
greedy and auction-based re-
flector selection algorithms.

Furthermore, we compare end-to-end delays between the auction-
based and the greedy algorithm. Since the reflector load variation
has been significantly reduced, we have also observed a reduction
of delay variation in Fig. 19, which shows the CDF of standard de-
viation of delays with two algorithms. Note that similar results are
also observed in traces from nodes with other types of Internet ac-
cess. By plotting the CDF of average end-to-end delays between
Wi-Fi nodes in Fig. 20, we notice that the average delay is im-
proved by a margin of 19%. It can be explained as users are more
likely to enjoy a shorter delay when we allow packets to be trans-
mitted over multiple relays in the auction-based reflector selection
algorithm. This is verified by Fig. 21, which shows that two trades
succeeded at half of auction markets in a user’s session, i.e., there
are two active relay paths in around 50% of time.
As the auction based algorithm introduces additional signaling

overhead and packet redundancy, we also wish to investigate the
flip side of the same coin in our performance evaluation. Fig. 22
reveals the CDF of a typical original multi-touch stream bit rate
and the corresponding uploaded stream rate. Although redundant
packets consume more upload bandwidth, the total upload bit rate

Figure 20: CDF of the end-to-
end delay between Wi-Fi/3G
users with the auction-based
reflector selection algorithm.

Figure 21: Number of con-
ducted trades in auction mar-
kets during a typical session of
a TouchTime user.

Figure 22: CDF of the original
multi-touch stream bit rate
and the uploaded stream rate.

Figure 23: Histogram of the
bit rate of multi-touch streams
inMusicScore traces.

is still reasonably low, considering most multi-touch streams are
bursty but low as shown in Fig. 23. In Table 1, we summarize
the mean of two major categories of overhead: delay probing mes-
sages and server load notifications (i.e., asks in double auction mar-
kets), along with their 95% confidence intervals. Since both types
of messages are less than 20 bytes, average values of the overhead
are 1.6% and 0.3%, respectively. Finally, our trace studies show
that the overall overhead ratio, including handshake signaling, is
no higher than 3%, which is reasonably low in practice.

Comparisons with Random-K
To study the performance of the greedy and auction algorithms

in a suitable context, we have also implemented and evaluated the
performance of the Random-K algorithm, one of the simplest and
most recently proposed relay selection algorithm in the literature [19].
With the Random-K algorithm, a user probes for end-to-end de-
lays of relay paths over a random set ofK reflectors in the reflector
cloud, and then use the first reflector who provides a response as its

Figure 24: Correlation be-
tweenK and the average end-
to-end delay in Random-K re-
flector selection algorithm.

Figure 25: CDF of standard
deviation of delay in Wi-Fi
end users with Random-K al-
gorithm.



relay server.
We first study the correlation between the value ofK and the av-

erage end-to-end delay experienced by TouchTime users. As shown
in Fig. 24, users tend to experience longer delays when the K
is small; as K increases, the average delay gradually settles to
146 msec, which is similar to the performance of the greedy al-
gorithm. With respect to the standard deviation of delays, Fig. 25
reveals that users suffer from significant fluctuations of end-to-end
delays when K is small. These results imply that a large enough
K, e.g.,K = 20, must be used to provide a probabilistic guarantee
on a low and stable delay.

6. RELATEDWORK
In recent years, there is a strong trend of closely integrating

mobile devices with the cloud to provide various feature-rich ser-
vices. Cuervo et al. proposes MAUI to offload computing work-
load from mobile devices to the cloud to maximize energy sav-
ing [6]. CloneCloud designed by Chun et al. makes it possible
for unmodified mobile applications running in an application-level
virtual machine to seamlessly offload part of their execution [5] to
the cloud. However, to our best of knowledge, no literature has re-
ported system frameworks supporting multi-touch gesture stream-
ing in mobile devices with cloud-based backends.
With respect to reflector selection algorithms, a number of sys-

tems has been proposed to predict latencies in the Internet. Net-
work coordinate systems, such as Vivaldi [7], are excellent exam-
ples of using synthetic coordinates to infer Internet latencies with-
out measurements. iPlane [15] is another example of a complete
system designed to predict latencies of Internet paths by using ex-
isting measurements, which can be used to select nearby servers.
ISP/AS-aware relay selection mechanisms are also used to trans-
mit streams with high bit rates, such as high-quality voice [17].
In contrast, TouchTime attempts to select reflectors based on bal-
anced considerations of both latencies and server load, and since
the TouchTime cloud only contains a small number of reflectors in
practice, the overhead of periodic measurements is not only accept-
able but also necessary, since end-to-end delays over reflectors may
vary substantially over time and depend on the server load.

7. CONCLUDING REMARKS
This paper presents the design and implementation of the TouchTime

system, a first attempt to stream multi-touch gestures between end
users with mobile devices across the Internet. We found that streams
in TouchTime have low yet bursty bit rates, and require reliable
transport. TouchTime combines local presentation of multi-touch
gestures on mobile devices and optimized transport services in the
cloud, without perceptible boundaries to applications. One of the
highlights in the design is the use of continuous double auctions
to achieve a balanced tradeoff between delays and server load. A
unique upshot of TouchTime is that all results are based on our solid
implementation in Objective-C based on the Cocoa SDK, including
over 58, 000 LOC in MusicScore, our new real-world music com-
position application on the iPad, and 4, 000 LOC in the TouchTime
foundation framework itself. The entire project reflects over 26
person-months of development work.
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